Engineering a Dynamic Solvent‐Phobic Liquid Electrolyte Interphase for Long‐Life Lithium Metal Batteries

The heterogeneity, species diversity, and poor mechanical stability of solid electrolyte interphases (SEIs) in conventional carbonate electrolytes result in the irreversible exhaustion of lithium (Li) and electrolytes during cycling, hindering the practical applications of Li metal batteries (LMBs)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-05, Vol.36 (18), p.e2308799-n/a
Hauptverfasser: Kang, Qi, Li, Yong, Zhuang, Zechao, Yang, Huijun, Luo, Liuxuan, Xu, Jie, Wang, Jian, Guan, Qinghua, Zhu, Han, Zuo, Yinze, Wang, Dong, Pei, Fei, Ma, Lianbo, Zhao, Jin, Li, Pengli, Lin, Ying, Liu, Yijie, Shi, Kunming, Li, Hongfei, Zhu, Yingke, Chen, Jie, Liu, Fei, Wu, Guangning, Yang, Jun, Jiang, Pingkai, Huang, Xingyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The heterogeneity, species diversity, and poor mechanical stability of solid electrolyte interphases (SEIs) in conventional carbonate electrolytes result in the irreversible exhaustion of lithium (Li) and electrolytes during cycling, hindering the practical applications of Li metal batteries (LMBs). Herein, this work proposes a solvent‐phobic dynamic liquid electrolyte interphase (DLEI) on a Li metal (Li–PFbTHF (perfluoro‐butyltetrahydrofuran)) surface that selectively transports salt and induces salt‐derived SEI formation. The solvent‐phobic DLEI with C–F‐rich groups dramatically reduces the side reactions between Li, carbonate solvents, and humid air, forming a LiF/Li3PO4‐rich SEI. In situ electrochemical impedance spectroscopy and Ab‐initio molecular dynamics demonstrate that DLEI effectively stabilizes the interface between Li metal and the carbonate electrolyte. Specifically, the LiFePO4||Li–PFbTHF cells deliver 80.4% capacity retention after 1000 cycles at 1.0 C, excellent rate capacity (108.2 mAh g−1 at 5.0 C), and 90.2% capacity retention after 550 cycles at 1.0 C in full‐cells (negative/positive (N/P) ratio of 8) with high LiFePO4 loadings (15.6 mg cm−2) in carbonate electrolyte. In addition, the 0.55 Ah pouch cell of 252.0 Wh kg−1 delivers stable cycling. Hence, this study provides an effective strategy for controlling salt‐derived SEI to improve the cycling performances of carbonate‐based LMBs. A solvent‐phobic dynamic liquid electrolyte interphase (DLEI) on a Li metal surface (Li–PFbTHF) is developed to improve the cycling performance of practical Li metal batteries in carbonate electrolytes. Evidence from advanced techniques indicated that the C–F‐rich groups of PFbTHF induce LiF/Li3PO4‐rich SEI. Consequently, the LiFePO4||Li–PFbTHF cells exhibit long‐term cycling stability and a high rate capacity.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.202308799