Ligand‐Mediated Magnetism‐Conversion Nanoprobes for Activatable Ultra‐High Field Magnetic Resonance Imaging
Ultra‐high field (UHF) magnetic resonance imaging (MRI) has emerged as a focal point of interest in the field of cancer diagnosis. Despite the ability of current paramagnetic or superparamagnetic smart MRI contrast agents to selectively enhance tumor signals in low‐field MRI, their effectiveness at...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2024-03, Vol.63 (10), p.e202318948-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ultra‐high field (UHF) magnetic resonance imaging (MRI) has emerged as a focal point of interest in the field of cancer diagnosis. Despite the ability of current paramagnetic or superparamagnetic smart MRI contrast agents to selectively enhance tumor signals in low‐field MRI, their effectiveness at UHF remains inadequate due to inherent magnetism. Here, we report a ligand‐mediated magnetism‐conversion nanoprobe (MCNP) composed of 3‐mercaptopropionic acid ligand‐coated silver‐gadolinium bimetallic nanoparticles. The MCNP exhibits a pH‐dependent magnetism conversion from ferromagnetism to diamagnetism, facilitating tunable nanomagnetism for pH‐activatable UHF MRI. Under neutral pH, the thiolate (−S−) ligands lead to short τ′m and increased magnetization of the MCNPs. Conversely, in the acidic tumor microenvironment, the thiolate ligands are protonated and transform into thiol (−SH) ligands, resulting in prolonged τ′m and decreased magnetization of the MCNP, thereby enhancing longitudinal relaxivity (r1) values at UHF MRI. Notably, under a 9 T MRI field, the pH‐sensitive changes in Ag−S binding affinity of the MCNP lead to a remarkable (>10‐fold) r1 increase in an acidic medium (pH 5.0). In vivo studies demonstrate the capability of MCNPs to amplify MRI signal of hepatic tumors, suggesting their potential as a next‐generation UHF‐tailored smart MRI contrast agent.
We develop a novel ligand‐mediated magnetism‐conversion nanoprobe (MCNP) with tunable nanomagnetism for ultra‐high field (UHF)‐tailored activatable magnetic resonance imaging (MRI) contrast enhancement. Under a 9 T MRI, the pH‐sensitive alteration in Ag−S binding affinity within the MCNP leads to a remarkable >10‐fold increase in longitudinal relaxivity (r1) value (10.6 mM−1 s−1, pH 5.0), as compared to the value observed at neutral pH. |
---|---|
ISSN: | 1433-7851 1521-3773 1521-3773 |
DOI: | 10.1002/anie.202318948 |