Quantitative characterization of nanoprecipitates in irradiated low-alloy steels : advances in the application of FEG-STEM quantitative microanalysis to real materials

The characterization of the solute-enriched features (clusters or nanoprecipitates in irradiated low-alloy steels) requires extremely high spatial and elemental resolution, previously necessitating analysis using atom probe field-ion microscopy. In this investigation, field-emission gun-scanning tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2006-07, Vol.41 (14), p.4512-4522
Hauptverfasser: BURKE, M. G, WATANABE, M, WILLIAMS, D. B, HYDE, J. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4522
container_issue 14
container_start_page 4512
container_title Journal of materials science
container_volume 41
creator BURKE, M. G
WATANABE, M
WILLIAMS, D. B
HYDE, J. M
description The characterization of the solute-enriched features (clusters or nanoprecipitates in irradiated low-alloy steels) requires extremely high spatial and elemental resolution, previously necessitating analysis using atom probe field-ion microscopy. In this investigation, field-emission gun-scanning transmission electron microscope (FEG-STEM) quantitative energy dispersive X-ray (EDX) microanalysis (spectrum imaging) has been applied to the characterization of the irradiation-induced nanoprecipitates in a low-alloy forging steel. Refinements in the EDX data have been possible via the application of multivariate statistical analysis (MSA) to the spectrum images, resulting in significantly reduced noise in the images. Most importantly, MSA permitted the clear identification of other elements in these Ni-enriched nanoprecipitates-including Mn and Cu. The processed X-ray spectrum images also provided direct evidence of the preferential formation of these irradiation-induced features along pre-existing dislocations within the steel, as well as the formation of intragranular nanoprecipitates. This research has provided the first direct X-ray spectrum images of irradiation-induced nanoprecipitates in high Ni A508 Gr4N forging steel, and has demonstrated the significant improvements attainable though the application of MSA techniques to the spectrum images. These results independently confirmed the analyses of the Ni-enriched nanoprecipitates previously conducted by 3D-APFIM, with the performance of the FEG-STEM/EDX technique shown to be comparable to that of the 3D-APFIM technique.
doi_str_mv 10.1007/s10853-006-0084-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29179463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259691058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-cae756f66e4c70f21f056640fd6afd5f64e67418b9eea2cb10584d143e3564c23</originalsourceid><addsrcrecordid>eNp9kc9qFTEUhwex4LX6AO4CoriJ5v_MuJNy2wqVItb1cJo5oSm5k2mSW3v7Qn3NZrhFxYWLcEj48uXk_JrmDWcfOWPtp8xZpyVlzNTVKXr3rFlx3UqqOiafNyvGhKBCGf6ieZnzNWNMt4KvmofvW5iKL1D8LRJ7BQlsweTv60GcSHRkginOCa2fFwoz8RPxKcHo624kIf6iEELckVwQQyafCYy3MNk9Wa6QwDwHb38Lj9cn9MfF-hu5-fvpjbcpwgRhl30mJZKEEMgGlmYg5FfNgasFXz_Vw-bn8fri6JSenZ98PfpyRq2SslAL2GrjjEFlW-YEd0wbo5gbDbhRO6PQtIp3lz0iCHvJme7UyJVEqY2yQh427_feOcWbLeYybHy2GAJMGLd5ED1ve2VkBT_8F6x5CN4Z2fOKvv0HvY7bVL9adUL3pl-6qBTfU3UOOSd0w5z8BtKuqoYl42Gf8VAzHpaMh7t6592TGbKF4FKdu89_LnZVLKSQj4hMqg0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259691058</pqid></control><display><type>article</type><title>Quantitative characterization of nanoprecipitates in irradiated low-alloy steels : advances in the application of FEG-STEM quantitative microanalysis to real materials</title><source>Springer Nature - Complete Springer Journals</source><creator>BURKE, M. G ; WATANABE, M ; WILLIAMS, D. B ; HYDE, J. M</creator><creatorcontrib>BURKE, M. G ; WATANABE, M ; WILLIAMS, D. B ; HYDE, J. M</creatorcontrib><description>The characterization of the solute-enriched features (clusters or nanoprecipitates in irradiated low-alloy steels) requires extremely high spatial and elemental resolution, previously necessitating analysis using atom probe field-ion microscopy. In this investigation, field-emission gun-scanning transmission electron microscope (FEG-STEM) quantitative energy dispersive X-ray (EDX) microanalysis (spectrum imaging) has been applied to the characterization of the irradiation-induced nanoprecipitates in a low-alloy forging steel. Refinements in the EDX data have been possible via the application of multivariate statistical analysis (MSA) to the spectrum images, resulting in significantly reduced noise in the images. Most importantly, MSA permitted the clear identification of other elements in these Ni-enriched nanoprecipitates-including Mn and Cu. The processed X-ray spectrum images also provided direct evidence of the preferential formation of these irradiation-induced features along pre-existing dislocations within the steel, as well as the formation of intragranular nanoprecipitates. This research has provided the first direct X-ray spectrum images of irradiation-induced nanoprecipitates in high Ni A508 Gr4N forging steel, and has demonstrated the significant improvements attainable though the application of MSA techniques to the spectrum images. These results independently confirmed the analyses of the Ni-enriched nanoprecipitates previously conducted by 3D-APFIM, with the performance of the FEG-STEM/EDX technique shown to be comparable to that of the 3D-APFIM technique.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-006-0084-x</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Copper ; Cross-disciplinary physics: materials science; rheology ; Dislocations ; Emission analysis ; Energy transmission ; Enrichment ; Exact sciences and technology ; Field ion microscopy ; Forging ; High strength steels ; Irradiation ; Low alloy steels ; Manganese ; Materials science ; Multivariate statistical analysis ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nickel ; Nickel chromium molybdenum steels ; Other topics in materials science ; Physics ; Scanning transmission electron microscopy ; Statistical analysis ; Steel ; Steels ; X-rays</subject><ispartof>Journal of materials science, 2006-07, Vol.41 (14), p.4512-4522</ispartof><rights>2007 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2006). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-cae756f66e4c70f21f056640fd6afd5f64e67418b9eea2cb10584d143e3564c23</citedby><cites>FETCH-LOGICAL-c433t-cae756f66e4c70f21f056640fd6afd5f64e67418b9eea2cb10584d143e3564c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18058232$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BURKE, M. G</creatorcontrib><creatorcontrib>WATANABE, M</creatorcontrib><creatorcontrib>WILLIAMS, D. B</creatorcontrib><creatorcontrib>HYDE, J. M</creatorcontrib><title>Quantitative characterization of nanoprecipitates in irradiated low-alloy steels : advances in the application of FEG-STEM quantitative microanalysis to real materials</title><title>Journal of materials science</title><description>The characterization of the solute-enriched features (clusters or nanoprecipitates in irradiated low-alloy steels) requires extremely high spatial and elemental resolution, previously necessitating analysis using atom probe field-ion microscopy. In this investigation, field-emission gun-scanning transmission electron microscope (FEG-STEM) quantitative energy dispersive X-ray (EDX) microanalysis (spectrum imaging) has been applied to the characterization of the irradiation-induced nanoprecipitates in a low-alloy forging steel. Refinements in the EDX data have been possible via the application of multivariate statistical analysis (MSA) to the spectrum images, resulting in significantly reduced noise in the images. Most importantly, MSA permitted the clear identification of other elements in these Ni-enriched nanoprecipitates-including Mn and Cu. The processed X-ray spectrum images also provided direct evidence of the preferential formation of these irradiation-induced features along pre-existing dislocations within the steel, as well as the formation of intragranular nanoprecipitates. This research has provided the first direct X-ray spectrum images of irradiation-induced nanoprecipitates in high Ni A508 Gr4N forging steel, and has demonstrated the significant improvements attainable though the application of MSA techniques to the spectrum images. These results independently confirmed the analyses of the Ni-enriched nanoprecipitates previously conducted by 3D-APFIM, with the performance of the FEG-STEM/EDX technique shown to be comparable to that of the 3D-APFIM technique.</description><subject>Copper</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dislocations</subject><subject>Emission analysis</subject><subject>Energy transmission</subject><subject>Enrichment</subject><subject>Exact sciences and technology</subject><subject>Field ion microscopy</subject><subject>Forging</subject><subject>High strength steels</subject><subject>Irradiation</subject><subject>Low alloy steels</subject><subject>Manganese</subject><subject>Materials science</subject><subject>Multivariate statistical analysis</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nickel</subject><subject>Nickel chromium molybdenum steels</subject><subject>Other topics in materials science</subject><subject>Physics</subject><subject>Scanning transmission electron microscopy</subject><subject>Statistical analysis</subject><subject>Steel</subject><subject>Steels</subject><subject>X-rays</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc9qFTEUhwex4LX6AO4CoriJ5v_MuJNy2wqVItb1cJo5oSm5k2mSW3v7Qn3NZrhFxYWLcEj48uXk_JrmDWcfOWPtp8xZpyVlzNTVKXr3rFlx3UqqOiafNyvGhKBCGf6ieZnzNWNMt4KvmofvW5iKL1D8LRJ7BQlsweTv60GcSHRkginOCa2fFwoz8RPxKcHo624kIf6iEELckVwQQyafCYy3MNk9Wa6QwDwHb38Lj9cn9MfF-hu5-fvpjbcpwgRhl30mJZKEEMgGlmYg5FfNgasFXz_Vw-bn8fri6JSenZ98PfpyRq2SslAL2GrjjEFlW-YEd0wbo5gbDbhRO6PQtIp3lz0iCHvJme7UyJVEqY2yQh427_feOcWbLeYybHy2GAJMGLd5ED1ve2VkBT_8F6x5CN4Z2fOKvv0HvY7bVL9adUL3pl-6qBTfU3UOOSd0w5z8BtKuqoYl42Gf8VAzHpaMh7t6592TGbKF4FKdu89_LnZVLKSQj4hMqg0</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>BURKE, M. G</creator><creator>WATANABE, M</creator><creator>WILLIAMS, D. B</creator><creator>HYDE, J. M</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20060701</creationdate><title>Quantitative characterization of nanoprecipitates in irradiated low-alloy steels : advances in the application of FEG-STEM quantitative microanalysis to real materials</title><author>BURKE, M. G ; WATANABE, M ; WILLIAMS, D. B ; HYDE, J. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-cae756f66e4c70f21f056640fd6afd5f64e67418b9eea2cb10584d143e3564c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Copper</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dislocations</topic><topic>Emission analysis</topic><topic>Energy transmission</topic><topic>Enrichment</topic><topic>Exact sciences and technology</topic><topic>Field ion microscopy</topic><topic>Forging</topic><topic>High strength steels</topic><topic>Irradiation</topic><topic>Low alloy steels</topic><topic>Manganese</topic><topic>Materials science</topic><topic>Multivariate statistical analysis</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nickel</topic><topic>Nickel chromium molybdenum steels</topic><topic>Other topics in materials science</topic><topic>Physics</topic><topic>Scanning transmission electron microscopy</topic><topic>Statistical analysis</topic><topic>Steel</topic><topic>Steels</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BURKE, M. G</creatorcontrib><creatorcontrib>WATANABE, M</creatorcontrib><creatorcontrib>WILLIAMS, D. B</creatorcontrib><creatorcontrib>HYDE, J. M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BURKE, M. G</au><au>WATANABE, M</au><au>WILLIAMS, D. B</au><au>HYDE, J. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative characterization of nanoprecipitates in irradiated low-alloy steels : advances in the application of FEG-STEM quantitative microanalysis to real materials</atitle><jtitle>Journal of materials science</jtitle><date>2006-07-01</date><risdate>2006</risdate><volume>41</volume><issue>14</issue><spage>4512</spage><epage>4522</epage><pages>4512-4522</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>The characterization of the solute-enriched features (clusters or nanoprecipitates in irradiated low-alloy steels) requires extremely high spatial and elemental resolution, previously necessitating analysis using atom probe field-ion microscopy. In this investigation, field-emission gun-scanning transmission electron microscope (FEG-STEM) quantitative energy dispersive X-ray (EDX) microanalysis (spectrum imaging) has been applied to the characterization of the irradiation-induced nanoprecipitates in a low-alloy forging steel. Refinements in the EDX data have been possible via the application of multivariate statistical analysis (MSA) to the spectrum images, resulting in significantly reduced noise in the images. Most importantly, MSA permitted the clear identification of other elements in these Ni-enriched nanoprecipitates-including Mn and Cu. The processed X-ray spectrum images also provided direct evidence of the preferential formation of these irradiation-induced features along pre-existing dislocations within the steel, as well as the formation of intragranular nanoprecipitates. This research has provided the first direct X-ray spectrum images of irradiation-induced nanoprecipitates in high Ni A508 Gr4N forging steel, and has demonstrated the significant improvements attainable though the application of MSA techniques to the spectrum images. These results independently confirmed the analyses of the Ni-enriched nanoprecipitates previously conducted by 3D-APFIM, with the performance of the FEG-STEM/EDX technique shown to be comparable to that of the 3D-APFIM technique.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s10853-006-0084-x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2006-07, Vol.41 (14), p.4512-4522
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_29179463
source Springer Nature - Complete Springer Journals
subjects Copper
Cross-disciplinary physics: materials science
rheology
Dislocations
Emission analysis
Energy transmission
Enrichment
Exact sciences and technology
Field ion microscopy
Forging
High strength steels
Irradiation
Low alloy steels
Manganese
Materials science
Multivariate statistical analysis
Nanocomposites
Nanomaterials
Nanostructure
Nickel
Nickel chromium molybdenum steels
Other topics in materials science
Physics
Scanning transmission electron microscopy
Statistical analysis
Steel
Steels
X-rays
title Quantitative characterization of nanoprecipitates in irradiated low-alloy steels : advances in the application of FEG-STEM quantitative microanalysis to real materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T18%3A38%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20characterization%20of%20nanoprecipitates%20in%20irradiated%20low-alloy%20steels%20:%20advances%20in%20the%20application%20of%20FEG-STEM%20quantitative%20microanalysis%20to%20real%20materials&rft.jtitle=Journal%20of%20materials%20science&rft.au=BURKE,%20M.%20G&rft.date=2006-07-01&rft.volume=41&rft.issue=14&rft.spage=4512&rft.epage=4522&rft.pages=4512-4522&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1007/s10853-006-0084-x&rft_dat=%3Cproquest_cross%3E2259691058%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259691058&rft_id=info:pmid/&rfr_iscdi=true