Quantitative characterization of nanoprecipitates in irradiated low-alloy steels : advances in the application of FEG-STEM quantitative microanalysis to real materials

The characterization of the solute-enriched features (clusters or nanoprecipitates in irradiated low-alloy steels) requires extremely high spatial and elemental resolution, previously necessitating analysis using atom probe field-ion microscopy. In this investigation, field-emission gun-scanning tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2006-07, Vol.41 (14), p.4512-4522
Hauptverfasser: BURKE, M. G, WATANABE, M, WILLIAMS, D. B, HYDE, J. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The characterization of the solute-enriched features (clusters or nanoprecipitates in irradiated low-alloy steels) requires extremely high spatial and elemental resolution, previously necessitating analysis using atom probe field-ion microscopy. In this investigation, field-emission gun-scanning transmission electron microscope (FEG-STEM) quantitative energy dispersive X-ray (EDX) microanalysis (spectrum imaging) has been applied to the characterization of the irradiation-induced nanoprecipitates in a low-alloy forging steel. Refinements in the EDX data have been possible via the application of multivariate statistical analysis (MSA) to the spectrum images, resulting in significantly reduced noise in the images. Most importantly, MSA permitted the clear identification of other elements in these Ni-enriched nanoprecipitates-including Mn and Cu. The processed X-ray spectrum images also provided direct evidence of the preferential formation of these irradiation-induced features along pre-existing dislocations within the steel, as well as the formation of intragranular nanoprecipitates. This research has provided the first direct X-ray spectrum images of irradiation-induced nanoprecipitates in high Ni A508 Gr4N forging steel, and has demonstrated the significant improvements attainable though the application of MSA techniques to the spectrum images. These results independently confirmed the analyses of the Ni-enriched nanoprecipitates previously conducted by 3D-APFIM, with the performance of the FEG-STEM/EDX technique shown to be comparable to that of the 3D-APFIM technique.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-006-0084-x