Removal of 2-Heptanone by Dielectric Barrier Discharges - The Effect of a Catalyst Support

2‐heptanone is representative of a class of odorous molecules. Recent studies have shown that by adding a catalyst to a dielectric barrier discharge (DBD) plasma, the elimination of 90% of this molecule can be achieved with low consumption of electric energy, at room temperature, for concentrations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma processes and polymers 2005-03, Vol.2 (3), p.256-262
Hauptverfasser: Blin-Simiand, Nicole, Tardiveau, Pierre, Risacher, Aurore, Jorand, François, Pasquiers, Stéphane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 262
container_issue 3
container_start_page 256
container_title Plasma processes and polymers
container_volume 2
creator Blin-Simiand, Nicole
Tardiveau, Pierre
Risacher, Aurore
Jorand, François
Pasquiers, Stéphane
description 2‐heptanone is representative of a class of odorous molecules. Recent studies have shown that by adding a catalyst to a dielectric barrier discharge (DBD) plasma, the elimination of 90% of this molecule can be achieved with low consumption of electric energy, at room temperature, for concentrations below 1 000 ppm. In the presented work, the removal of the ketone by DBD, both in dry air and within a slice of a honeycomb monolith of cordierite without a catalyst, was studied. In both experiments, the discharge was operated in a plane‐to‐plane geometry with a discharge volume of 10 cm3. A high voltage, bipolar pulse generator (40 kV max, 1–140 Hz frequency range) was used. In dry air, it was found that 2‐heptanone is almost totally removed (>95%) for a specific deposited energy of about 500 J · l−1, but this elimination is less effective in the porous cordierite reactor (80%) for the same energy. This effect is explained by the very different spatial distribution of the plasma within the discharge volume, as seen using a CCD camera. Moreover, the adsorption‐desorption equilibrium of the molecule at the surface of the material is greatly influenced by the discharge. 2‐Heptanone removal as a function of the specific energy for the DBD both in dry air and in the cordierite catalyst support.
doi_str_mv 10.1002/ppap.200400088
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29178734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29178734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4248-ec20b681c47d02317fbd6151e0d616048d24010cbd4ba27d955e0a2ec79fb1033</originalsourceid><addsrcrecordid>eNqFkDFPwzAQRiMEEqWwMntiSzk7ceyMpYUWqSoVFFVisRznQgNpE-wUyL8nVVDFxvSdTu-dTp_nXVIYUAB2XVW6GjCAEACkPPJ6NKLMlzKKjw8zh1PvzLk3gAC4hJ738oib8lMXpMwI86dY1XpbbpEkDRnnWKCpbW7IjbY2R9uunFlr-4qO-GS5RnKbZS2ylzUZ6VoXjavJ066qSlufeyeZLhxe_Gbfe767XY6m_uxhcj8aznwTslD6aBgkkaQmFCmwgIosSSPKKUIbEYQyZSFQMEkaJpqJNOYcQTM0Is4SCkHQ9666u5UtP3boarVp38Si0Fssd06xmAopgrAFBx1obOmcxUxVNt9o2ygKal-h2leoDhW2QtwJX3mBzT-0WiyGi7-u37m5q_H74Gr7riIRCK5W84kar-azxZxzJYMfuiiDiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29178734</pqid></control><display><type>article</type><title>Removal of 2-Heptanone by Dielectric Barrier Discharges - The Effect of a Catalyst Support</title><source>Access via Wiley Online Library</source><creator>Blin-Simiand, Nicole ; Tardiveau, Pierre ; Risacher, Aurore ; Jorand, François ; Pasquiers, Stéphane</creator><creatorcontrib>Blin-Simiand, Nicole ; Tardiveau, Pierre ; Risacher, Aurore ; Jorand, François ; Pasquiers, Stéphane</creatorcontrib><description>2‐heptanone is representative of a class of odorous molecules. Recent studies have shown that by adding a catalyst to a dielectric barrier discharge (DBD) plasma, the elimination of 90% of this molecule can be achieved with low consumption of electric energy, at room temperature, for concentrations below 1 000 ppm. In the presented work, the removal of the ketone by DBD, both in dry air and within a slice of a honeycomb monolith of cordierite without a catalyst, was studied. In both experiments, the discharge was operated in a plane‐to‐plane geometry with a discharge volume of 10 cm3. A high voltage, bipolar pulse generator (40 kV max, 1–140 Hz frequency range) was used. In dry air, it was found that 2‐heptanone is almost totally removed (&gt;95%) for a specific deposited energy of about 500 J · l−1, but this elimination is less effective in the porous cordierite reactor (80%) for the same energy. This effect is explained by the very different spatial distribution of the plasma within the discharge volume, as seen using a CCD camera. Moreover, the adsorption‐desorption equilibrium of the molecule at the surface of the material is greatly influenced by the discharge. 2‐Heptanone removal as a function of the specific energy for the DBD both in dry air and in the cordierite catalyst support.</description><identifier>ISSN: 1612-8850</identifier><identifier>EISSN: 1612-8869</identifier><identifier>DOI: 10.1002/ppap.200400088</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>2-heptanone ; catalysts support ; dielectric barrier discharges (DBD) ; nonthermal plasma ; volatile organic compounds (VOC)</subject><ispartof>Plasma processes and polymers, 2005-03, Vol.2 (3), p.256-262</ispartof><rights>Copyright © 2005 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4248-ec20b681c47d02317fbd6151e0d616048d24010cbd4ba27d955e0a2ec79fb1033</citedby><cites>FETCH-LOGICAL-c4248-ec20b681c47d02317fbd6151e0d616048d24010cbd4ba27d955e0a2ec79fb1033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fppap.200400088$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fppap.200400088$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Blin-Simiand, Nicole</creatorcontrib><creatorcontrib>Tardiveau, Pierre</creatorcontrib><creatorcontrib>Risacher, Aurore</creatorcontrib><creatorcontrib>Jorand, François</creatorcontrib><creatorcontrib>Pasquiers, Stéphane</creatorcontrib><title>Removal of 2-Heptanone by Dielectric Barrier Discharges - The Effect of a Catalyst Support</title><title>Plasma processes and polymers</title><addtitle>Plasma Processes Polym</addtitle><description>2‐heptanone is representative of a class of odorous molecules. Recent studies have shown that by adding a catalyst to a dielectric barrier discharge (DBD) plasma, the elimination of 90% of this molecule can be achieved with low consumption of electric energy, at room temperature, for concentrations below 1 000 ppm. In the presented work, the removal of the ketone by DBD, both in dry air and within a slice of a honeycomb monolith of cordierite without a catalyst, was studied. In both experiments, the discharge was operated in a plane‐to‐plane geometry with a discharge volume of 10 cm3. A high voltage, bipolar pulse generator (40 kV max, 1–140 Hz frequency range) was used. In dry air, it was found that 2‐heptanone is almost totally removed (&gt;95%) for a specific deposited energy of about 500 J · l−1, but this elimination is less effective in the porous cordierite reactor (80%) for the same energy. This effect is explained by the very different spatial distribution of the plasma within the discharge volume, as seen using a CCD camera. Moreover, the adsorption‐desorption equilibrium of the molecule at the surface of the material is greatly influenced by the discharge. 2‐Heptanone removal as a function of the specific energy for the DBD both in dry air and in the cordierite catalyst support.</description><subject>2-heptanone</subject><subject>catalysts support</subject><subject>dielectric barrier discharges (DBD)</subject><subject>nonthermal plasma</subject><subject>volatile organic compounds (VOC)</subject><issn>1612-8850</issn><issn>1612-8869</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQRiMEEqWwMntiSzk7ceyMpYUWqSoVFFVisRznQgNpE-wUyL8nVVDFxvSdTu-dTp_nXVIYUAB2XVW6GjCAEACkPPJ6NKLMlzKKjw8zh1PvzLk3gAC4hJ738oib8lMXpMwI86dY1XpbbpEkDRnnWKCpbW7IjbY2R9uunFlr-4qO-GS5RnKbZS2ylzUZ6VoXjavJ066qSlufeyeZLhxe_Gbfe767XY6m_uxhcj8aznwTslD6aBgkkaQmFCmwgIosSSPKKUIbEYQyZSFQMEkaJpqJNOYcQTM0Is4SCkHQ9666u5UtP3boarVp38Si0Fssd06xmAopgrAFBx1obOmcxUxVNt9o2ygKal-h2leoDhW2QtwJX3mBzT-0WiyGi7-u37m5q_H74Gr7riIRCK5W84kar-azxZxzJYMfuiiDiA</recordid><startdate>20050331</startdate><enddate>20050331</enddate><creator>Blin-Simiand, Nicole</creator><creator>Tardiveau, Pierre</creator><creator>Risacher, Aurore</creator><creator>Jorand, François</creator><creator>Pasquiers, Stéphane</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20050331</creationdate><title>Removal of 2-Heptanone by Dielectric Barrier Discharges - The Effect of a Catalyst Support</title><author>Blin-Simiand, Nicole ; Tardiveau, Pierre ; Risacher, Aurore ; Jorand, François ; Pasquiers, Stéphane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4248-ec20b681c47d02317fbd6151e0d616048d24010cbd4ba27d955e0a2ec79fb1033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>2-heptanone</topic><topic>catalysts support</topic><topic>dielectric barrier discharges (DBD)</topic><topic>nonthermal plasma</topic><topic>volatile organic compounds (VOC)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blin-Simiand, Nicole</creatorcontrib><creatorcontrib>Tardiveau, Pierre</creatorcontrib><creatorcontrib>Risacher, Aurore</creatorcontrib><creatorcontrib>Jorand, François</creatorcontrib><creatorcontrib>Pasquiers, Stéphane</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Plasma processes and polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blin-Simiand, Nicole</au><au>Tardiveau, Pierre</au><au>Risacher, Aurore</au><au>Jorand, François</au><au>Pasquiers, Stéphane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Removal of 2-Heptanone by Dielectric Barrier Discharges - The Effect of a Catalyst Support</atitle><jtitle>Plasma processes and polymers</jtitle><addtitle>Plasma Processes Polym</addtitle><date>2005-03-31</date><risdate>2005</risdate><volume>2</volume><issue>3</issue><spage>256</spage><epage>262</epage><pages>256-262</pages><issn>1612-8850</issn><eissn>1612-8869</eissn><abstract>2‐heptanone is representative of a class of odorous molecules. Recent studies have shown that by adding a catalyst to a dielectric barrier discharge (DBD) plasma, the elimination of 90% of this molecule can be achieved with low consumption of electric energy, at room temperature, for concentrations below 1 000 ppm. In the presented work, the removal of the ketone by DBD, both in dry air and within a slice of a honeycomb monolith of cordierite without a catalyst, was studied. In both experiments, the discharge was operated in a plane‐to‐plane geometry with a discharge volume of 10 cm3. A high voltage, bipolar pulse generator (40 kV max, 1–140 Hz frequency range) was used. In dry air, it was found that 2‐heptanone is almost totally removed (&gt;95%) for a specific deposited energy of about 500 J · l−1, but this elimination is less effective in the porous cordierite reactor (80%) for the same energy. This effect is explained by the very different spatial distribution of the plasma within the discharge volume, as seen using a CCD camera. Moreover, the adsorption‐desorption equilibrium of the molecule at the surface of the material is greatly influenced by the discharge. 2‐Heptanone removal as a function of the specific energy for the DBD both in dry air and in the cordierite catalyst support.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/ppap.200400088</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1612-8850
ispartof Plasma processes and polymers, 2005-03, Vol.2 (3), p.256-262
issn 1612-8850
1612-8869
language eng
recordid cdi_proquest_miscellaneous_29178734
source Access via Wiley Online Library
subjects 2-heptanone
catalysts support
dielectric barrier discharges (DBD)
nonthermal plasma
volatile organic compounds (VOC)
title Removal of 2-Heptanone by Dielectric Barrier Discharges - The Effect of a Catalyst Support
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A29%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Removal%20of%202-Heptanone%20by%20Dielectric%20Barrier%20Discharges%20-%20The%20Effect%20of%20a%20Catalyst%20Support&rft.jtitle=Plasma%20processes%20and%20polymers&rft.au=Blin-Simiand,%20Nicole&rft.date=2005-03-31&rft.volume=2&rft.issue=3&rft.spage=256&rft.epage=262&rft.pages=256-262&rft.issn=1612-8850&rft.eissn=1612-8869&rft_id=info:doi/10.1002/ppap.200400088&rft_dat=%3Cproquest_cross%3E29178734%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29178734&rft_id=info:pmid/&rfr_iscdi=true