Thermodynamic Guidelines for the Mechanosynthesis or Solid-State Synthesis of MnFe2O4 at Relatively Low Temperatures

Herein, thermodynamic assessment is proposed to screen suitable precursors for the solid-state synthesis of manganese ferrite, by mechanosynthesis at room temperature or by subsequent calcination at relatively low temperatures, and the main findings are validated by experimental results for the repr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-01, Vol.17 (2), p.299
Hauptverfasser: Antunes, Isabel, Baptista, Miguel, Kovalevsky, Andrei, Yaremchenko, Aleksey, Frade, Jorge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herein, thermodynamic assessment is proposed to screen suitable precursors for the solid-state synthesis of manganese ferrite, by mechanosynthesis at room temperature or by subsequent calcination at relatively low temperatures, and the main findings are validated by experimental results for the representative precursor mixtures MnO + FeO3, MnO2 + Fe2O3, and MnO2 +2FeCO3. Thermodynamic guidelines are provided for the synthesis of manganese ferrite from (i) oxide and/or metallic precursors; (ii) carbonate + carbonate or carbonate + oxide powder mixtures; (iii) other precursors. It is also shown that synthesis from metallic precursors (Mn + 2Fe) requires a controlled oxygen supply in limited redox conditions, which is hardly achieved by reducing gases H2/H2O or CO/CO2. Oxide mixtures with an overall oxygen balance, such as MnO + Fe2O3, act as self-redox buffers and offer prospects for mechanosynthesis for a sufficient time (>9 h) at room temperature. On the contrary, the fully oxidised oxide mixture MnO2 + Fe2O3 requires partial reduction, which prevents synthesis at room temperature and requires subsequent calcination at temperatures above 1100 °C in air or in nominally inert atmospheres above 750 °C. Oxide + carbonate mixtures, such as MnO2 +2FeCO3, also yield suitable oxygen balance by the decomposition of the carbonate precursor and offer prospects for mechanosynthesis at room temperature, and residual fractions of reactants could be converted by firing at relatively low temperatures (≥650 °C).
ISSN:1996-1944
1996-1944
DOI:10.3390/ma17020299