Effect of 4-nonylphenol (4-NP) on sperm function: Insights into the PI3K/PDK1/AKT signaling pathway during capacitation
4-Nonylphenol (4-NP) is an endocrine-disrupting chemical that impairs animal and human reproduction. However, the mechanisms underlying male reproductive dysfunction by 4-NP have not been fully understood. Herein, we demonstrated the effects of 4-NP on boar sperm functions and molecular mechanisms....
Gespeichert in:
Veröffentlicht in: | Reproductive toxicology (Elmsford, N.Y.) N.Y.), 2024-03, Vol.124, p.108545, Article 108545 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 4-Nonylphenol (4-NP) is an endocrine-disrupting chemical that impairs animal and human reproduction. However, the mechanisms underlying male reproductive dysfunction by 4-NP have not been fully understood. Herein, we demonstrated the effects of 4-NP on boar sperm functions and molecular mechanisms. Spermatozoa were treated with various concentrations of 4-NP (0, 10, 25, 50, 75, and 100 μM) during capacitation. Then, we evaluated sperm motility, capacitation status, intracellular ATP level, and cell viability. Finally, we measured the expression of phosphorylated protein kinase A (PKA), tyrosine phosphorylation, and proteins related to the phosphatidylinositol 3 kinase (PI3K)/phosphoinositide-dependent kinase-1 (PDK1)/protein kinase B (AKT) signaling pathways following exposure to 4-NP. Sperm motility and motion kinematics were reduced by 4-NP, whereas intracellular ATP levels were increased significantly in a dose-dependent manner. Furthermore, the expression levels of p-PI3K, PTEN, p-PDK1, AKT, and p-AKT exhibited a significant dose-dependent increase. Moreover, abnormal activation of PKA and tyrosine phosphorylation were observed. Specifically, the ∼24 kDa p-PKA substrate demonstrated a significant reduction following exposure to 4-Np. In addition, the ∼18 kDa p-PKA substrate and tyrosine-phosphorylated proteins displayed a significant dose-dependent increase after exposure to 4-NP. Our results suggest that 4-NP may induce detrimental effects on sperm functions through abnormal changes in PKA activity and tyrosine phosphorylation during capacitation, possibly through unusual alteration of the PI3K/PDK1/AKT signaling pathway. Therefore, 4-NP must be cautiously used considering its reproductive toxicity.
•4-NP diminished sperm motility, motion kinematics, and capacitation status.•4-NP induced unusual PKA activity and tyrosine phosphorylation.•4-NP altered the expression levels of PI3K/PDK1/AKT signaling-related proteins.•4-NP has male reproductive toxicity. |
---|---|
ISSN: | 0890-6238 1873-1708 1873-1708 |
DOI: | 10.1016/j.reprotox.2024.108545 |