Corosolic acid enhances oxidative stress-induced apoptosis and senescence in pancreatic cancer cells by inhibiting the JAK2/STAT3 pathway

Background Pancreatic cancer (PC) is a fatal human malignancy with a poor prognosis. Corosolic acid (CRA) is a triterpenoid, has been reported to have inhibitory effects on tumor growth. However, the role of CRA on PC has not been explored. Here, we aimed to uncover the molecular mechanisms of CRA i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology reports 2024-12, Vol.51 (1), p.176-176, Article 176
Hauptverfasser: Luo, Xu, Ye, Zhengchen, Xu, Chenglei, Chen, Huan, Dai, Shupeng, Chen, Weihong, Bao, Guoqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Pancreatic cancer (PC) is a fatal human malignancy with a poor prognosis. Corosolic acid (CRA) is a triterpenoid, has been reported to have inhibitory effects on tumor growth. However, the role of CRA on PC has not been explored. Here, we aimed to uncover the molecular mechanisms of CRA in PC progression. Methods Cell viability, lactate dehydrogenase (LDH) release, cell apoptosis and senescence were detected by cell counting kit-8 (CCK-8), LDH, flow cytometry and senescence associated-β-galactosidase (SA-β-gal) assay. Levels of relevant proteins and oxidative stress (OS) markers were evaluated by Western blot and enzyme-linked immunosorbent assay (ELISA). A xenograft tumor model was established to explore the in vivo effects of CRA on PC. Results We found that CRA inhibited PC cell viability and promoted LDH release in a dose-dependent manner, but had no significant effect on human normal pancreatic ductal epithelial cells HPDE6C7. CRA increased OS-induced cell apoptosis and senescence in HAPC and SW1990 cells. And CRA decreased the levels of anti-apoptotic protein Bcl-2, and elevated the expression of pro-apoptotic protein Bax and senescence-associated proteins P21 and P53. Besides, CRA decreased tumor growth in xenograft models. Furthermore, CRA inactivated the Janus kinase-2 (JAK2)/Signal Transducer and Activator of Transcription 3 (STAT3) signaling pathway in HAPC and SW1990 cells. Functional experiments demonstrated that activation of the JAK2/STAT3 pathway by the JAK2 activator coumermycin A1 (C-A1) or the STAT3 activator colivelin (col) reduced the contribution effect of OS, apoptosis and senescence by CRA. Conclusion Taken together, our findings indicated that CRA exerted anti-cancer effects in PC by inhibiting the JAK2/STAT3 pathway.
ISSN:0301-4851
1573-4978
DOI:10.1007/s11033-023-09105-w