Construction of second-order accurate monotone and stable residual distribution schemes for steady problems
After having recalled the basic concepts of residual distribution (RD) schemes, we provide a systematic construction of distribution schemes able to handle general unstructured meshes, extending the work of Sidilkover. Then, by using the concept of simple waves, we show how to generalize this techni...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2004-04, Vol.195 (2), p.474-507 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | After having recalled the basic concepts of residual distribution (RD) schemes, we provide a systematic construction of distribution schemes able to handle general unstructured meshes, extending the work of Sidilkover. Then, by using the concept of simple waves, we show how to generalize this technique to symmetrizable linear systems. A stability analysis is provided. We formally extend this construction to the Euler equations. Several test cases are presented to validate our approach. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2003.09.022 |