A Comparison Study on Toughening Vinyl Ester Resins Using Different Nanocarbon Materials

This study aims to comprehensively compare and evaluate the toughening effects of different nanocarbon materials on vinyl ester resins. Four typical nanocarbon materials, including graphene, graphene oxide (GO), single-walled carbon nanotubes (SWCNTs), and multi-walled carbon nanotubes (MWCNTs), wer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2023-11, Vol.15 (23), p.4536
Hauptverfasser: Yang, Ruirui, Wang, Yating, Ran, Xiaolu, Liu, Wanshuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aims to comprehensively compare and evaluate the toughening effects of different nanocarbon materials on vinyl ester resins. Four typical nanocarbon materials, including graphene, graphene oxide (GO), single-walled carbon nanotubes (SWCNTs), and multi-walled carbon nanotubes (MWCNTs), were used as reinforcing fillers for vinyl ester resins. These four nanocarbon materials were dispersed in the vinyl ester resin matrix by the combination of high-speed stirring and probe sonication, and their dispersion states were observed with optical microscopy. The effects of incorporating different nanocarbon materials on the viscosities, thermal properties, tensile properties, and fracture toughness of the resulting modified vinyl ester resins were systematically investigated. The results indicate that the four nanocarbon materials show enhanced toughening effects on the vinyl ester resin in the sequence of SWCNTs, GO, MWCNTs, and graphene. Compared with the control resin, the modified vinyl ester resin containing 0.2 wt% graphene shows 45% and 54% enhancements in the critical stress intensity factor ( ) and critical strain energy release rate ( ), respectively. The incorporation of the four nanocarbon materials has almost no effect on the glass transition temperatures of the resulting modified vinyl ester resins. This study provides valuable insights into the selection of nanocarbon additives for enhancing the toughness of vinyl ester resins.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym15234536