Artificial intelligence model GPT4 narrowly fails simulated radiological protection exam
This study assesses the efficacy of Generative Pre-Trained Transformers (GPT) published by OpenAI in the specialised domains of radiological protection and health physics. Utilising a set of 1064 surrogate questions designed to mimic a health physics certification exam, we evaluated the models'...
Gespeichert in:
Veröffentlicht in: | Journal of radiological protection 2024-03, Vol.44 (1), p.13502 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study assesses the efficacy of Generative Pre-Trained Transformers (GPT) published by OpenAI in the specialised domains of radiological protection and health physics. Utilising a set of 1064 surrogate questions designed to mimic a health physics certification exam, we evaluated the models' ability to accurately respond to questions across five knowledge domains. Our results indicated that neither model met the 67% passing threshold, with GPT-3.5 achieving a 45.3% weighted average and GPT-4 attaining 61.7%. Despite GPT-4's significant parameter increase and multimodal capabilities, it demonstrated superior performance in all categories yet still fell short of a passing score. The study's methodology involved a simple, standardised prompting strategy without employing prompt engineering or in-context learning, which are known to potentially enhance performance. The analysis revealed that GPT-3.5 formatted answers more correctly, despite GPT-4's higher overall accuracy. The findings suggest that while GPT-3.5 and GPT-4 show promise in handling domain-specific content, their application in the field of radiological protection should be approached with caution, emphasising the need for human oversight and verification. |
---|---|
ISSN: | 0952-4746 1361-6498 |
DOI: | 10.1088/1361-6498/ad1fdf |