Artificial intelligence model GPT4 narrowly fails simulated radiological protection exam

This study assesses the efficacy of Generative Pre-Trained Transformers (GPT) published by OpenAI in the specialised domains of radiological protection and health physics. Utilising a set of 1064 surrogate questions designed to mimic a health physics certification exam, we evaluated the models'...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of radiological protection 2024-03, Vol.44 (1), p.13502
Hauptverfasser: Roemer, G, Li, A, Mahmood, U, Dauer, L, Bellamy, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study assesses the efficacy of Generative Pre-Trained Transformers (GPT) published by OpenAI in the specialised domains of radiological protection and health physics. Utilising a set of 1064 surrogate questions designed to mimic a health physics certification exam, we evaluated the models' ability to accurately respond to questions across five knowledge domains. Our results indicated that neither model met the 67% passing threshold, with GPT-3.5 achieving a 45.3% weighted average and GPT-4 attaining 61.7%. Despite GPT-4's significant parameter increase and multimodal capabilities, it demonstrated superior performance in all categories yet still fell short of a passing score. The study's methodology involved a simple, standardised prompting strategy without employing prompt engineering or in-context learning, which are known to potentially enhance performance. The analysis revealed that GPT-3.5 formatted answers more correctly, despite GPT-4's higher overall accuracy. The findings suggest that while GPT-3.5 and GPT-4 show promise in handling domain-specific content, their application in the field of radiological protection should be approached with caution, emphasising the need for human oversight and verification.
ISSN:0952-4746
1361-6498
DOI:10.1088/1361-6498/ad1fdf