Ecophysiological responses of Liolaemus arambarensis juveniles to experimental temperature variations

Climate change increasingly influences the loss of biodiversity, especially in ectothermic organisms, which depend on environmental temperatures to obtain heat and regulate their life cycle. Studies that aim to understand the impact of temperature variation are important to better understand the pos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comparative biochemistry and physiology. Part A, Molecular & integrative physiology Molecular & integrative physiology, 2024-04, Vol.290, p.111577-111577, Article 111577
Hauptverfasser: Valgas, Artur Antunes Navarro, Cubas, Gustavo Kasper, de Oliveira, Diogo Reis, Araujo, Jéssica Fonseca, Altenhofen, Stefani, Bonan, Carla Denise, Oliveira, Guendalina Turcato, Verrastro, Laura
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Climate change increasingly influences the loss of biodiversity, especially in ectothermic organisms, which depend on environmental temperatures to obtain heat and regulate their life cycle. Studies that aim to understand the impact of temperature variation are important to better understand the possible impacts generated on the homeostasis of ectothermic organisms. Our objective was to characterize the responses of juvenile Liolaemus arambarensis lizards to abrupt changes in temperature, quantifying markers of body condition, intermediary and hormonal metabolism and oxidative balance. We collected 45 juvenile individuals of L. arambarensis (winter: 20 and summer: 25) in Barra do Ribeiro, Brazil. We transported the animals to the laboratory, where they were acclimatized for five days at a temperature of 20 °C, then divided and exposed to temperatures of 10 °C, 20 °C, 30 °C and 40 °C for 24 h. After exposure, the animals were euthanized and the brain, caudal muscle, thigh, and liver tissues were extracted for quantification of biomarkers of metabolism (glycogen and total proteins) and oxidative balance (acetylcholinesterase, superoxide dismutase, catalase, glutathione-S-transferase and lipoperoxidation) and plasma for corticosterone quantification. The results show that L. arambarensis is susceptible to sudden temperature variations, where higher temperatures caused greater activity of antioxidant enzymes, increased lipoperoxidation and higher plasma levels of corticosterone in animals eliminated in winter. The present study demonstrated that abrupt changes in temperature could significantly modify the homeostatic mechanisms of animals, which could lead to oxidative stress and a potential trade-off between survival and growth/reproduction. In this context, the organism mobilizes energy resources for survival, with possible damage to growth and reproduction. Demonstrate that a change in temperature can be a potential factor in extinction for a species given the profile of global climate change. [Display omitted] •Liolaemus arambarensis is susceptible to abrupt temperature variations.•Higher temperature evoked greater activity of antioxidant enzymes.•Higher temperature induced increased oxidative damage (TBARS) in animals collected in winter.•Higher levels of corticosterone were observed at higher temperatures in winter lizards.•The animals were more susceptible to increased temperatures, especially in winter.
ISSN:1095-6433
1531-4332
DOI:10.1016/j.cbpa.2024.111577