Orchestration and theranostic applications of synthetic genome with Hachimoji bases/building blocks
Synthetic genomics is a novel field of chemical biology where the chemically modified genetic alphabets have been considered in central dogma of life. Tweaking of chemical compositions of natural nucleotide bases could be developed as novel building blocks of DNA/RNA. The modified bases (dP, dZ, dS,...
Gespeichert in:
Veröffentlicht in: | Chemical biology & drug design 2024-01, Vol.103 (1), p.e14378-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Synthetic genomics is a novel field of chemical biology where the chemically modified genetic alphabets have been considered in central dogma of life. Tweaking of chemical compositions of natural nucleotide bases could be developed as novel building blocks of DNA/RNA. The modified bases (dP, dZ, dS, and dB etc.) have been demonstrated to be adaptable for replication, transcription and follow Darwinism law of evolution. With advancement of chemical biology especially nucleotide chemistry, synthetic genetic codes have been discovered and Hachimoji nucleotides are the most important and significant one among them. These additional nucleotide bases can form orthogonal base‐pairing, and also follow Darwinian evolution and other structural features. In the Hachimoji base pairing, synthetic building blocks are formed using eight modified nucleotide (DNA/RNA) letters (hence the name “Hachimoji”). Their structural conformations, like polyelectrolyte backbones and stereo‐regular building blocks favor thermodynamic stability and confirm Schrodinger aperiodic crystal. From the structural genomics aspect, these synthetic bases could be incorporated into the central dogma of life. Researchers have shown Hachimoji building blocks were transcribed to its RNA counterpart as a functional fluorescent Hachimoji aptamer. Apart from several unnatural nucleotide base pairs maneuvered into its in vitro and in vivo applications, this review describes future perspective towards the development and therapeutic utilization of the genetic codes, a primary objective of synthetic and chemical biology.
Modified oligos and ‘central dogma’ using recombinant enzymes. |
---|---|
ISSN: | 1747-0277 1747-0285 |
DOI: | 10.1111/cbdd.14378 |