Ensuring safety standards in sewage sludge-derived biochar: Impact of pyrolysis process temperature and carrier gas on micropollutant removal
The application of sewage sludge to agricultural land is facing increasing restrictions due to concerns about various micropollutants, including polycyclic aromatic hydrocarbons (PAHs), dioxins and furans (PCDD/Fs), polychlorinated biphenyls (PCBs), per- and poly-fluoroalkyl substances (PFAS), and h...
Gespeichert in:
Veröffentlicht in: | Journal of environmental management 2024-02, Vol.352, p.119964-119964, Article 119964 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The application of sewage sludge to agricultural land is facing increasing restrictions due to concerns about various micropollutants, including polycyclic aromatic hydrocarbons (PAHs), dioxins and furans (PCDD/Fs), polychlorinated biphenyls (PCBs), per- and poly-fluoroalkyl substances (PFAS), and heavy metals (HMs). As an alternative approach to manage this residue, the use of pyrolysis, a process that transforms sludge into biochar, a carbon-rich solid material, is being explored. Despite the potential benefits of pyrolysis, there is limited data on its effectiveness in removing micropollutants and the potential presence of harmful elements in the resulting biochar. This study aims to evaluate the impact of the temperature and the use of a carrier gas (N2) during a two-stage pyrolysis and cooling on micropollutant removal. Pilot-scale tests showed that a higher temperature (650 °C) and the use of a carrier gas (0.4 L/min N2) during the pyrolysis and the cooling process led to a reduction of PAHs, PCDD/Fs, PCBs and PFAS below their detection limits. As such, the generated biochar aligns with the guidelines set by the International Biochar Initiative (IBI) and the European Biochar Certificate (EBC) for all micropollutants, except for zinc and copper. Additional investigation is required to determine whether the micropollutants undergo destruction or transition into other pyrolysis end-products, such as the gas or liquid phase.
[Display omitted]
•Verification of PAH, PCB, HM, PFAS and PCDD/F in biochar out of sewage sludge.•Reduction of pollutants in biochar by varying temperature and carrier gas.•High pyrolysis temperature (650°) reduces micropollutants.•Carrier gas supply during the pyrolysis and cooling process reduces micropollutants.•Generated biochar fulfils the EBC guidelines except for zinc and copper. |
---|---|
ISSN: | 0301-4797 1095-8630 |
DOI: | 10.1016/j.jenvman.2023.119964 |