Designing of a cellulose-based ion-imprinted biosorbent for selective removal of lead (II) from aqueous solutions
Developing an effective adsorbent for Pb2+ removal from wastewater has huge economic and environmental implications. Adsorbents made from cellulosic materials that have been modified with certain chelators could be used to get rid of metal cations from aqueous solutions. However, their selectivity f...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-02, Vol.259 (Pt 2), p.129145-129145, Article 129145 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Developing an effective adsorbent for Pb2+ removal from wastewater has huge economic and environmental implications. Adsorbents made from cellulosic materials that have been modified with certain chelators could be used to get rid of metal cations from aqueous solutions. However, their selectivity for specific metals remains very low. Here, we describe the synthesis of 4-(2-pyridyl)thiosemicarbazide (PTC) hydrazidine-functionalized cellulose (Pb-PTC-CE), a polymer imprinted with Pb2+ ions that may be used to remove Pb2+ ions from wastewater. Owing to its potent -NH2 functionalization, PTC hydrazidine not only served as an efficient chelator to effectively supply coordinating sites and construct hierarchical porous structures on Pb-PTC-CE, but it also made it possible for cross-linking to occur through the glyoxal cross-linker. The abundant chelators, along with the hierarchical porous construction of the developed Pb-PTC-CE with PTC functionality, result in a greater sorption capacity of 336 mg/g and a short sorption period of 40 min for Pb2+. Additionally, Pb-PTC-CE exhibits highly selective Pb2+ uptake compared to competing ions. This study proposes a feasible methodology for the development of high-quality materials for Pb2+ remediation by combining the advantages of active ligand functionality with ion-imprinting techniques in a straightforward way.
[Display omitted] |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2023.129145 |