Anatomical registration of intracranial electrodes. Robust model-based localization and deformable smooth brain-shift compensation methods

Intracranial electrodes are typically localized from post-implantation CT artifacts. Automatic algorithms localizing low signal-to-noise ratio artifacts and high-density electrode arrays are missing. Additionally, implantation of grids/strips introduces brain deformations, resulting in registration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience methods 2024-04, Vol.404, p.110056, Article 110056
Hauptverfasser: Blenkmann, Alejandro Omar, Leske, Sabine Liliana, Llorens, Anaïs, Lin, Jack J., Chang, Edward F., Brunner, Peter, Schalk, Gerwin, Ivanovic, Jugoslav, Larsson, Pål Gunnar, Knight, Robert Thomas, Endestad, Tor, Solbakk, Anne-Kristin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intracranial electrodes are typically localized from post-implantation CT artifacts. Automatic algorithms localizing low signal-to-noise ratio artifacts and high-density electrode arrays are missing. Additionally, implantation of grids/strips introduces brain deformations, resulting in registration errors when fusing post-implantation CT and pre-implantation MR images. Brain-shift compensation methods project electrode coordinates to cortex, but either fail to produce smooth solutions or do not account for brain deformations. We first introduce GridFit, a model-based fitting approach that simultaneously localizes all electrodes’ CT artifacts in grids, strips, or depth arrays. Second, we present CEPA, a brain-shift compensation algorithm combining orthogonal-based projections, spring-mesh models, and spatial regularization constraints. We tested GridFit on ∼6000 simulated scenarios. The localization of CT artifacts showed robust performance under difficult scenarios, such as noise, overlaps, and high-density implants (
ISSN:0165-0270
1872-678X
1872-678X
DOI:10.1016/j.jneumeth.2024.110056