Optimizing the Synergistic Potential of Pseudo-Labels from Radiology Notes and Annotated Ground Truth in Identifying Pulmonary Opacities on Chest Radiographs for Early Detection of Acute Respiratory Distress Syndrome

Acute Respiratory Distress Syndrome (ARDS) is a life-threatening lung injury, hallmarks of which are bilateral radiographic opacities. Studies have shown that early recognition of ARDS could reduce severity and lethal clinical sequela. A Convolutional Neural Network (CNN) model that can identify bil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AMIA ... Annual Symposium proceedings 2023, Vol.2023, p.270-279
Hauptverfasser: Arora, Mehak, Davis, Carolyn M, Mondal, Angana, Gowda, Niraj R, Foster, Dennis Gene, Kamaleswaran, Rishikesan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Acute Respiratory Distress Syndrome (ARDS) is a life-threatening lung injury, hallmarks of which are bilateral radiographic opacities. Studies have shown that early recognition of ARDS could reduce severity and lethal clinical sequela. A Convolutional Neural Network (CNN) model that can identify bilateral pulmonary opacities on chest x-ray (CXR) images can aid early ARDS recognition. Obtaining large datasets with ground truth labels to train CNNs is challenging, as medical image annotation requires clinical expertise and meticulous consideration. In this work, we implement a natural language processing pipeline that extracts pseudo-labels CXR images by parsing radiology notes for abnormal findings. We obtain ground-truth annotations from clinicians for the presence of pulmonary opacities for a subset of these images. A knowledge distillation-based teacher-student training framework is implemented to leverage the larger dataset with noisy pseudo-labels. Our results show an AUC of 0.93 (95%CI 0.92-0.94) for the prediction of bilateral opacities on chest radiographs.
ISSN:1559-4076