Pyrite-activated persulfate to degrade 3,5,6-trichloro-2-pyridyl in water: Degradation and Fe release mechanism
TCP (3,5,6-trichloro-2-pyridinol), the main recalcitrant degradation product of chlorpyrifos, poses a high risk to human health and ecological systems. This study provided a comprehensive exploration of the pyrite-activated persulfate (PS) system for the removal of TCP in water and placed particular...
Gespeichert in:
Veröffentlicht in: | Environmental research 2024-06, Vol.251 (Pt 2), p.118198, Article 118198 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | TCP (3,5,6-trichloro-2-pyridinol), the main recalcitrant degradation product of chlorpyrifos, poses a high risk to human health and ecological systems. This study provided a comprehensive exploration of the pyrite-activated persulfate (PS) system for the removal of TCP in water and placed particular emphasis on the pyrite oxidation process that releases Fe. The results showed that the pyrite-activated PS system can completely degrade TCP within 300 min at 5.0 mmol/L PS and 1000 mg/L pyrite at 25 °C, wherein small amounts of PS (1 mmol/L) can effectively facilitate TCP removal and the oxidation of pyrite elements, while excessive PS (>20 mmol/L) can lead to competitive inhibitory effects, especially in the Fe release process. Aimed at the dual effects, the evident positive correlation (R2 > 0.90) between TCP degradation (kTCP) and Fe element release (kFe), but the value of k (0.00237) in the pyrite addition variable experiment was less than that in the PS experiment (k = 0.00729), further indicating that the inhibition effect of excessive addition consists of PS but not notably pyrite. Moreover, the predominant free radicals and non-free radicals produced in the pyrite/PS system were tested, with the order of significance being •OH |
---|---|
ISSN: | 0013-9351 1096-0953 1096-0953 |
DOI: | 10.1016/j.envres.2024.118198 |