Characterization of Collagen from Jellyfish Aurelia aurita and Investigation of Biomaterials Potentials
Marine collagen sources are potent alternatives due to abundant yield, low pathogen infection risk, high biocompatibility, and any religious and ethical restrictions compared to terrestrial collagen sources. In this research, we aim to investigate the biomaterials potential of the collagen from Aure...
Gespeichert in:
Veröffentlicht in: | Applied biochemistry and biotechnology 2024-09, Vol.196 (9), p.6200-6221 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Marine collagen sources are potent alternatives due to abundant yield, low pathogen infection risk, high biocompatibility, and any religious and ethical restrictions compared to terrestrial collagen sources. In this research, we aim to investigate the biomaterials potential of the collagen from
Aurelia aurita
, which is a native jellyfish species in the Marmara Sea. Spectroscopic techniques were used to investigate the structure of jellyfish collagen (JCol) from acid-soluble fraction and compared to Jellagen® from Rhizostoma pulmo. MALDI-TOF showed the main peak of Jellagen® at 276,765.161 Da and jellyfish collagen at 276,761.687 Da. SDS-PAGE indicated α1 and α2 bands at about 122 kDa and 140 kDa, respectively. In FTIR and Raman spectra, the locations of amide bands of both species were almost the same. The pI of JCol was determined as 4.46. The particle size decreased abruptly at 43
o
C from 890 to 290 nm. Water, organic and inorganic ratios of collagen were determined at 7.14%, 63.59, and 29.27 respectively. In DSC, the denaturation temperature (Td) of JCol was found at 43.7
o
C and found to be higher than that of the collagens from jellyfishes that have been reported so far in the literature. Biocompatibility testing by metabolic assay revealed significantly higher fibroblast proliferation on collagen film than on the Tissue Culture Plate. To conclude,
Aurelia aurita
collagen would be a suitable source of collagen when biomaterials are needed to have high biocompatibility and unique macromolecular properties such as high denaturation temperatures. |
---|---|
ISSN: | 0273-2289 1559-0291 1559-0291 |
DOI: | 10.1007/s12010-023-04848-5 |