A facile liquid foam based synthesis of nickel nanoparticles and their subsequent conversion to NicoreAgshell particles: structural characterization and investigation of magnetic properties
A facile route for the synthesis of nickel nanoparticles in stable aqueous foams is reported. The Ni nanoparticles were roughly 12-15 nm in size and were stable as aqueous suspensions or powders when oleic acid was used as a capping agent. These Ni nanoparticles were subsequently coated with a silve...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry 2004-10, Vol.14 (19), p.2941-2945 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A facile route for the synthesis of nickel nanoparticles in stable aqueous foams is reported. The Ni nanoparticles were roughly 12-15 nm in size and were stable as aqueous suspensions or powders when oleic acid was used as a capping agent. These Ni nanoparticles were subsequently coated with a silver shell in view of the extra stability and the enhanced manipulative ability afforded by the silver nanocoating. This was accomplished by a simple transmetallation reaction wherein the nanoparticle surface nickel atoms act as localized reducing agents for the silver ions in solution. As the silver shell is formed through the surface reaction a reduction in the average size of the Nicore occurs. After the core-shell structure formation, the Nicore, has an average diameter of 10-20 nm while the Agshell has a thickness of 2-4 nm. The pristine oleic acid coated Ni and NicoreAgshell nanoparticles were probed for their magnetic characteristics by a vibrating sample magnetometer. The nascent, oleic acid coated Ni nanoparticles display a low superparamagnetic blocking temperature, TB, of 20 K. The field dependent magnetic behaviour above and below TB displays the standard features corresponding to superparamagnetism, as expected for very small Ni crystallites suggesting again that each 12 nm particle is polycrystalline. The magnetic contribution in the NicoreAgshell system comes from only the Ni core and predictably, the blocking temperature of this system is below 12 K due to the smaller size of the Ni core. |
---|---|
ISSN: | 0959-9428 1364-5501 |
DOI: | 10.1039/b405335b |