Construction of a depression risk prediction model for type 2 diabetes mellitus patients based on NHANES 2007–2014
Type 2 diabetes mellitus (T2DM) is a prevalent global health issue that has been linked to an increased risk of depression. The objective of this study was to construct a nomogram model for predicting depression in T2DM patients. A total of 4280 patients with T2DM were included in this study from th...
Gespeichert in:
Veröffentlicht in: | Journal of affective disorders 2024-03, Vol.349, p.217-225 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Type 2 diabetes mellitus (T2DM) is a prevalent global health issue that has been linked to an increased risk of depression. The objective of this study was to construct a nomogram model for predicting depression in T2DM patients.
A total of 4280 patients with T2DM were included in this study from the 2007–2014 NHANES. The entire dataset was split randomly into training set comprising 70 % of the data and a validation set comprising 30 % of the data. LASSO and multivariate logistic regression analyses identified predictors significantly associated with depression, and the nomogram was constructed with these predictors. The model was assessed by C-index, calibration curve, the hosmer–lemeshow test and decision curve analysis (DCA).
The nomogram model comprised of 9 predictors, namely age, gender, PIR, BMI, education attainment, smoking status, LDL-C, sleep duration and sleep disorder. The C-index of the training set was 0.780, while that of the validation set was 0.752, indicating favorable discrimination for the model. The model exhibited excellent clinical applicability and calibration in both the training and validation datasets. Moreover, the cut-off value of the nomogram is 223.
This study has shortcomings in data collection, lack of external validation, and results non-extrapolation.
Our nomogram exhibits high clinical predictability, enabling clinicians to utilize this tool in identifying high-risk depressed patients with T2DM. It has the potential to decrease the incidence of depression and significantly improve the prognosis of patients with T2DM.
•This is the first nomogram model to predict depression in patients with T2DM among the United States population.•The model showed favorable discrimination, clinical applicability, and calibration in both training and validation datasets.•The nomogram has the potential to identify high-risk depressed patients and improve the prognosis of patients with T2DM. |
---|---|
ISSN: | 0165-0327 1573-2517 |
DOI: | 10.1016/j.jad.2024.01.083 |