Quantum-inspired optical coherence tomography using classical light in a single-photon counting regime
Quantum optical coherence tomography (Q-OCT) presents many advantages over its classical counterpart, optical coherence tomography (OCT), provides an increased axial resolution, and is immune to even orders of dispersion. The core of Q-OCT is the quantum interference of negatively correlated entangl...
Gespeichert in:
Veröffentlicht in: | Optics letters 2024-01, Vol.49 (2), p.363-366 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantum optical coherence tomography (Q-OCT) presents many advantages over its classical counterpart, optical coherence tomography (OCT), provides an increased axial resolution, and is immune to even orders of dispersion. The core of Q-OCT is the quantum interference of negatively correlated entangled photon pairs which, in the Fourier domain, are observed by means of a joint spectrum measurement. In this work, we explore the use of a spectral approach in a novel configuration where classical light pulses are employed instead of entangled photons. The intensity of these light pulses is reduced to a single photon level. We report theoretical analysis along with its experimental validation to show that although such a classical light is much easier to launch into an experimental system, it offers limited benefits compared to Q-OCT based on the entangled light. We analyze the differences in the characteristics of the joint spectrum obtained with entangled photons and with classical optical pulses and point out to the differences' source: the lack of the advantage-bringing term in the signal. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.505678 |