Tunable sequential pathways through spatial partitioning and frustration tuning in soft metamaterials
Elastic instabilities have been leveraged in soft metamaterials to attain novel functionalities such as mechanical memory and sequential pathways. Pathways have been realized in complex media or within a collection of hysteretic elements. However, much less has been explored in frustrated and partit...
Gespeichert in:
Veröffentlicht in: | Soft matter 2024-02, Vol.2 (6), p.1186-1198 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Elastic instabilities have been leveraged in soft metamaterials to attain novel functionalities such as mechanical memory and sequential pathways. Pathways have been realized in complex media or within a collection of hysteretic elements. However, much less has been explored in frustrated and partitioned soft metamaterials. In this work, we introduce spatial partitioning as a method to localize deformation in sub-regions of a large and soft metamaterial. The partitioning is achieved through the strategic arrangement of soft inclusions in a soft lattice, which form distinct regions behaving as mechanical units. We examine two partitions: an
equally spaced layer partition
with mechanical units connected in series, and a
cross partition
, represented by interconnected series of mechanical units in parallel. Sequential pathways are obtained by frustrating the partitioned metamaterial post-manufacture and are characterized by tracking the polarization change in each partition region. Through a combination of experiments and simulations, we demonstrate that partitioning enables tuning the pathway from longitudinal with weak interactions to a pathway exhibiting strong interactions rising from geometric incompatibility and central domain rotation. We show that tuning the level of uniform lateral pre-strain provides a wide range of tunability from disabling to modifying the sequential pathway. We also show that imposing a nonuniform confinement and altering the tilting of one or two of the domain edges enables to program the pathway, access a larger set of states, and tune the level of interaction between the regions.
We partition a large periodic soft lattice by embedding a set of soft inclusions. By using a combination of lateral confinement and angle tilting, we frustrate the domain to enable, disable, and tune sequential pathways post-manufacture. |
---|---|
ISSN: | 1744-683X 1744-6848 |
DOI: | 10.1039/d3sm01174g |