Characterization of hydrogenated diamond-like carbon films electrochemically deposited on a silicon substrate
Diamond-like carbon (DLC) films were deposited on a Si substrate by electrolysis in a methanol solution at ambient pressure and low temperature. The morphology and microstructure of the resulting DLC films were analysed using atomic force microscopy, Raman spectroscopy, Fourier transformation infrar...
Gespeichert in:
Veröffentlicht in: | Journal of physics. D, Applied physics Applied physics, 2004-09, Vol.37 (17), p.2416-2424 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diamond-like carbon (DLC) films were deposited on a Si substrate by electrolysis in a methanol solution at ambient pressure and low temperature. The morphology and microstructure of the resulting DLC films were analysed using atomic force microscopy, Raman spectroscopy, Fourier transformation infrared spectrometry, x-ray photoelectron spectroscopy (XPS), and x-ray excited Auger electron spectroscopy (XAES). The surface energy and mechanical properties of the DLC films were examined, and the growth mechanism of the DLC films in liquid phase electro-deposition is discussed as well. The results of the study show that the hydrogenated diamond-like carbon films are smooth and compact. The percentage of sp3 carbon in the DLC films is determined as 55-60%, based on the corresponding XPS and first-derivative XAES spectra of graphite, diamond, and the tested films. The DLC films show low surface free energy, good mechanical properties, excellent friction-reduction and wear-resistance. It is suggested that methanol dissociates to generate the active species of and C2H4 at high voltage applied to the electrode, followed by the generation of the alkyl chain [-CH2-CH2-]n whose C-C and C-H bond lengths and C-C-C and H-C-H bond angles are close to that of diamond. Subsequently, a diamond-like structure was formed by the ordered dehydrogenation of a short-chain [-CH2-CH2-]n in the electrolysis process. |
---|---|
ISSN: | 0022-3727 1361-6463 |
DOI: | 10.1088/0022-3727/37/17/012 |