Bayesian optimization of gradient trajectory for parallel‐transmit pulse design

Purpose Spoke pulses improve excitation homogeneity in parallel‐transmit MRI. We propose an efficient global optimization algorithm, Bayesian optimization of gradient trajectory (BOGAT), for single‐slice and simultaneous multislice imaging. Theory and Methods BOGAT adds an outer loop to optimize kT‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2024-06, Vol.91 (6), p.2358-2373
Hauptverfasser: Zhang, Minghao, Rodgers, Christopher T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Spoke pulses improve excitation homogeneity in parallel‐transmit MRI. We propose an efficient global optimization algorithm, Bayesian optimization of gradient trajectory (BOGAT), for single‐slice and simultaneous multislice imaging. Theory and Methods BOGAT adds an outer loop to optimize kT‐space positions. For each position, the RF coefficients are optimized (e.g., with magnitude least squares) and the cost function evaluated. Bayesian optimization progressively estimates the cost function. It automatically chooses the kT‐space positions to sample, to achieve fast convergence, often coming close to the globally optimal spoke positions. We investigated the typical features of spokes cost functions by a grid search with field maps comprising 85 slabs from 14 volunteers. We tested BOGAT in this database, and prospectively in a phantom and in vivo. We compared the vendor‐provided Fourier transform approach with the same magnitude least squares RF optimizer. Results The cost function is nonconvex and seen empirically to be piecewise smooth with discontinuities where the underlying RF optimum changes sharply. BOGAT converged to within 10% of the global minimum cost within 30 iterations in 93% of slices in our database. BOGAT achieved up to 56% lower flip angle RMS error (RMSE) or 55% lower pulse energy in phantoms versus the Fourier transform approach, and up to 30% lower RMSE and 29% lower energy in vivo with 7.8 s extra computation. Conclusion BOGAT efficiently estimated near‐global optimum spoke positions for the two‐spoke tests, reducing flip‐angle RMSE and/or pulse energy in a computation time (˜10 s), which is suitable for online optimization.
ISSN:0740-3194
1522-2594
DOI:10.1002/mrm.30007