Cation vacancy-boosted BaZnB4O8:xEu3+ phosphors with high quantum yield and thermal stability for pc-WLEDs
Achieving high luminescent quantum yield and thermal stability of phosphors simultaneously remains challenging, yet it is critical for facilitating high-power white light emitting diodes (WLEDs). Herein, we report the design and preparation of the layered structure BaZnB4O8:xEu3+ (0.10 ≤ x ≤ 0.60) r...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2024-01, Vol.53 (5), p.1966-1976 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Achieving high luminescent quantum yield and thermal stability of phosphors simultaneously remains challenging, yet it is critical for facilitating high-power white light emitting diodes (WLEDs). Herein, we report the design and preparation of the layered structure BaZnB4O8:xEu3+ (0.10 ≤ x ≤ 0.60) red phosphors with high quantum yield (QY = 76.5%) and thermal stability (82.8%@150 °C) by the traditional solid-state reaction method. The results of XRD and Rietveld refinement show that the presence of Eu3+ ions at Ba2+ sites causes the formation of cation (Zn2+/Ba2+) vacancies in the lattice. The PL and PL decay results reveal that the quenching concentration of BZBO:xEu3+ phosphors is as high as 50%, and the lifetime remains unchanged with Eu3+ concentration due to the unique structure of the host and the cation vacancies generated by the heterovalent substitution. Furthermore, on a 395 nm near-UV chip, a pc-WLED device with exceptional optical performance (CCT = 4415 K, CRI = 92.1) was realized using the prepared BZBO:0.50Eu3+ as a red phosphor. Simple synthesis and excellent performance parameters suggest that the reported BaZnB4O8:xEu3+ phosphors have promising applications in high-power pc-WLEDs. At the same time, it also indicates that cationic vacancy engineering based on heterovalent ion substitution is a potential strategy for improving luminescence quantum yield and thermal quenching performance. |
---|---|
ISSN: | 1477-9226 1477-9234 |
DOI: | 10.1039/d3dt04090a |