Investigations of the reaction mechanism of sodium with hydrogen fluoride to form sodium fluoride and the adsorption of hydrogen fluoride on sodium fluoride monomer and tetramer
Context The reaction between Na and HF is a typical harpooning reaction which is of great interest due to its significance in understanding the elementary chemical reaction kinetics. This work aims to investigate the detailed reaction mechanisms of sodium with hydrogen fluoride and the adsorption of...
Gespeichert in:
Veröffentlicht in: | Journal of molecular modeling 2024-02, Vol.30 (2), p.26-26, Article 26 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Context
The reaction between Na and HF is a typical harpooning reaction which is of great interest due to its significance in understanding the elementary chemical reaction kinetics. This work aims to investigate the detailed reaction mechanisms of sodium with hydrogen fluoride and the adsorption of HF on the resultant NaF as well as the (NaF)
4
tetramer. The results suggest that the reaction between Na and HF leads to the formation of sodium fluoride salt NaF and hydrogen gas. Na interacts with HF to form a complex HF···Na, and then the approaching of F atom of HF to Na results in a transition state H···F···Na. Accompanied by the broken of H-F bond, the bond forms between F and Na atoms as NaF, then the product NaF is yielded due to the removal of H atom. The resultant NaF can further form (NaF)
4
tetramer. The interaction of NaF with HF leads to the complex NaF···HF; the form I as well as II of (NaF)
4
can interact with HF to produce two complexes (i.e., (NaF)
4
(I-1)···HF, (NaF)
4
(I-2)···HF, (NaF)
4
(II-1)···HF and (NaF)
4
(II-2)···HF), but the form III of (NaF)
4
can interact with HF to produce only one complex (NaF)
4
(III)···HF. These complexes were explored in terms of noncovalent interaction (NCI) and quantum theory of atoms in molecules (QTAIM) analyses. NCI analyses confirm the existences of attractive interactions in the complexes HF···Na, NaF···HF, (NaF)
4
(I-1)···HF, (NaF)
4
(I-2)···HF, (NaF)
4
(II-1)···HF and (NaF)
4
(II-2)···HF, and (NaF)
4
(III)···HF. QTAIM analyses suggest that the F···Na interaction forms in the HF···Na complex while the F···H hydrogen bonds form in NaF···HF, (NaF)
4
(I-1)···HF, (NaF)
4
(I-2)···HF, (NaF)
4
(II-1)···HF and (NaF)
4
(II-2)···HF, and (NaF)
4
(III)···HF complexes. Natural bond orbital (NBO) analyses were also applied to analyze the intermolecular donor-acceptor orbital interactions in these complexes. These results would provide valuable insight into the chemical reaction of Na and HF and the adsorption interaction between sodium fluoride salt and HF.
Methods
The calculations were carried out at the M06-L/6-311++G(2d,2p) level of theory which were performed using the Gaussian16 program. Intrinsic reaction coordinate (IRC) calculations were carried out at the same level of theory to confirm that the obtained transition state was true. The molecular surface electrostatic potential (MSEP) was employed to understand how the complex forms. Quantum theory of atoms in molecules (QTAIM) and noncovalent interaction (N |
---|---|
ISSN: | 1610-2940 0948-5023 |
DOI: | 10.1007/s00894-023-05821-z |