Brown sugar as a carbon source can make agricultural organic waste compost enter the secondary thermophilic stage and promote compost decomposition

To enhance the efficiency of composting agricultural organic waste (AOW), this study aimed to examine the impact of inoculating tomato straw compost with two distinct microbial agents: ZymoZone (ZZ), a composite microbial agent derived from the straw compost and Effective Microorganisms (EM), a comm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental monitoring and assessment 2024-02, Vol.196 (2), p.113-113, Article 113
Hauptverfasser: Xu, Peng, Tripathi, Priyanka, Mishra, Sita, Shu, Luolin, Li, Xue, Zhao, Shiwen, Verma, Sakshi, Verma, Ranjeet, Wu, Yongjun, Yang, Zhenchao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To enhance the efficiency of composting agricultural organic waste (AOW), this study aimed to examine the impact of inoculating tomato straw compost with two distinct microbial agents: ZymoZone (ZZ), a composite microbial agent derived from the straw compost and Effective Microorganisms (EM), a commercial microbial agent. Furthermore, in order to reactivate the microorganisms within the compost during the initial high temperature phase, 10% brown sugar was introduced as a carbon source. The objective of this addition was to assess its influence on the composting process. The findings revealed that compared to the control (CK) group, the ZZ and EM treatments extended the first high-temperature phase by 2 and 1 day, respectively. Furthermore, with the addition of 10% brown sugar, the ZZ and EM treatments remained in the second high-temperature phase for 8 and 7 days, respectively, while the CK treatment had already entered the cooling stage by then. Notably, the inoculation of microbial agents and the addition of brown sugar substantially augmented the activity of lignocellulose-related hydrolases, thereby promoting the degradation of lignocellulose in the ZZ and EM treatment groups. This was confirmed by FTIR analysis, which demonstrated that the addition of microbial agents facilitated the degradation of specific substances, leading to reduced absorbance in the corresponding spectra. XRD analysis further indicated a notable reduction in cellulose crystallinity for both the ZZ (8.00%) and EM (7.73%) treatments. Hence, the incorporation of microbial agents and brown sugar in tomato straw compost effectively enhances the composting process and improves the quality of compost products.
ISSN:0167-6369
1573-2959
DOI:10.1007/s10661-023-12292-5