Myopathy-causing mutation R91P in the TPM3 gene drastically impairs structural and functional properties of slow skeletal muscle tropomyosin γβ-heterodimer
Tropomyosin (Tpm) is a regulatory actin-binding protein involved in Ca activation of contraction of striated muscle. In human slow skeletal muscles, two distinct Tpm isoforms, γ and β, are present. They interact to form three types of dimeric Tpm molecules: γγ-homodimers, γβ-heterodimers, or ββ-homo...
Gespeichert in:
Veröffentlicht in: | Archives of biochemistry and biophysics 2024-02, Vol.752, p.109881-109881, Article 109881 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tropomyosin (Tpm) is a regulatory actin-binding protein involved in Ca
activation of contraction of striated muscle. In human slow skeletal muscles, two distinct Tpm isoforms, γ and β, are present. They interact to form three types of dimeric Tpm molecules: γγ-homodimers, γβ-heterodimers, or ββ-homodimers, and a majority of the molecules are present as γβ-Tpm heterodimers. Point mutation R91P within the TPM3 gene encoding γ-Tpm is linked to the condition known as congenital fiber-type disproportion (CFTD), which is characterized by severe muscle weakness. Here, we investigated the influence of the R91P mutation in the γ-chain on the properties of the γβ-Tpm heterodimer. We found that the R91P mutation impairs the functional properties of γβ-Tpm heterodimer more severely than those of earlier studied γγ-Tpm homodimer carrying this mutation in both γ-chains. Since a significant part of Tpm molecules in slow skeletal muscle is present as γβ-heterodimers, our results explain why this mutation leads to muscle weakness in CFTD. |
---|---|
ISSN: | 0003-9861 1096-0384 |
DOI: | 10.1016/j.abb.2023.109881 |