Symphonizing pileup and full-alignment for deep learning-based long-read variant calling
Deep learning-based variant callers are becoming the standard and have achieved superior single nucleotide polymorphisms calling performance using long reads. Here we present Clair3, which leverages two major method categories: pileup calling handles most variant candidates with speed, and full-alig...
Gespeichert in:
Veröffentlicht in: | Nature Computational Science 2022-12, Vol.2 (12), p.797-803 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Deep learning-based variant callers are becoming the standard and have achieved superior single nucleotide polymorphisms calling performance using long reads. Here we present Clair3, which leverages two major method categories: pileup calling handles most variant candidates with speed, and full-alignment tackles complicated candidates to maximize precision and recall. Clair3 runs faster than any of the other state-of-the-art variant callers and demonstrates improved performance, especially at lower coverage. |
---|---|
ISSN: | 2662-8457 2662-8457 |
DOI: | 10.1038/s43588-022-00387-x |