Defect Evolution in Ion Irradiated 6H-SiC Epitaxial Layers
Deep-Level Transient Spectroscopy and room temperature photoluminescence were used to characterise a 6H-SiC epitaxial layer irradiated with 10 MeV C+ and to follow the defect annealing in the temperature range 300-1400 °C. The intensity of luminescence peak at 423 nm, related to band to band transit...
Gespeichert in:
Veröffentlicht in: | Materials Science Forum 2005-05, Vol.483-485, p.485-488 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Deep-Level Transient Spectroscopy and room temperature photoluminescence were used to characterise a 6H-SiC epitaxial layer irradiated with 10 MeV C+ and to follow the defect annealing in the temperature range 300-1400 °C. The intensity of luminescence peak at 423 nm, related to band to band transitions, decreases after irradiation and it is slowly recovered after annealing in the temperature range 1000-1400 °C. The DLTS spectra of low temperature annealed samples show the presence of several overlapping traps, which anneal and evolve at high
temperatures. After 1200 °C a main level at Ec-0.43 eV (E1/E2) is detected. The comparison between luminescence and DLTS results indicates that the defect associated with the E1/E2 level is mainly responsible for the luminescence quenching after irradiation. |
---|---|
ISSN: | 0255-5476 1662-9752 1662-9752 |
DOI: | 10.4028/www.scientific.net/MSF.483-485.485 |