Blow-up results and global existence of positive solutions for the inhomogeneous evolution P-Laplacian equations
This paper deals with the Cauchy problem of inhomogeneous evolution P-Laplacian equations ∂ t u − div ( | ∇ u | p − 2 ∇ u ) = u q + w ( x ) with nonnegative initial data, where p > 1 , q > max { 1 , p − 1 } , and w ( x ) ⁄ ≡ 0 is a nonnegative continuous functions in R n . We prove that q c =...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2007-03, Vol.66 (6), p.1290-1301 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with the Cauchy problem of inhomogeneous evolution P-Laplacian equations
∂
t
u
−
div
(
|
∇
u
|
p
−
2
∇
u
)
=
u
q
+
w
(
x
)
with nonnegative initial data, where
p
>
1
,
q
>
max
{
1
,
p
−
1
}
, and
w
(
x
)
⁄
≡
0
is a nonnegative continuous functions in
R
n
. We prove that
q
c
=
(
p
−
1
)
n
/
(
n
−
p
)
is its critical exponent provided that
2
n
/
(
n
+
1
)
<
p
<
n
, i.e., if
q
≤
q
c
, then every positive solution blows up in finite time; whereas for
q
>
q
c
, the equation possesses a global positive solution for some
w
(
x
)
and some initial data. Meanwhile, we also prove that its positive solutions blow up in finite time provided that
n
≤
p
. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2006.01.026 |