3D particle image velocimetry of the flow field around a sphere sedimenting near a wall

The flow fields surrounding a sphere sedimenting through a liquid near a vertical wall are characterized using 3D stereoscopic particle-image velocimetry (PIV) experiments. Three different fluids, a Newtonian reference fluid, a constant (shear) viscosity Boger fluid, and a shear-thinning elastic flu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of non-Newtonian fluid mechanics 2007-02, Vol.141 (2), p.99-115
Hauptverfasser: Tatum, Jared A., Finnis, Mark V., Lawson, Nicholas J., Harrison, Graham M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The flow fields surrounding a sphere sedimenting through a liquid near a vertical wall are characterized using 3D stereoscopic particle-image velocimetry (PIV) experiments. Three different fluids, a Newtonian reference fluid, a constant (shear) viscosity Boger fluid, and a shear-thinning elastic fluid, are used to determine the effects of both elasticity and shear-thinning on the flow field. All three fluids have similar zero shear viscosities. The Weissenberg number is manipulated by varying the diameter and the composition of the ball. Significant differences are found for the different types of fluid, demonstrating both the influence of elasticity and shear-thinning on the velocity fields. In addition, the impact of the wall on the flow field is qualitatively different for each fluid. We find that the flow behind the sphere is strongly dependent on the fluid properties as well as the elasticity. Also, the presence of a negative wake is found for the shear-thinning fluid at high Weissenberg number ( Wi > 1).
ISSN:0377-0257
1873-2631
DOI:10.1016/j.jnnfm.2006.08.012