A biodegradable triblock copolymer poly(ethylene glycol)-b-poly(l-lactide)-b-poly(l-lysine): Synthesis, self-assembly, and RGD peptide modification

A novel biodegradable triblock copolymer poly(ethylene glycol)-b-poly(l-lactide)-b-poly(l-lysine) (PEG–PLA–PLL) was synthesized by acidolysis of poly(ethylene glycol)-b-poly(l-lactide)-b-poly(ɛ-benzyloxycarbonyl-l-lysine) (PEG–PLA–PZLL) obtained by the ring-opening polymerization (ROP) of ɛ-benzylox...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) 2007-01, Vol.48 (1), p.139-149
Hauptverfasser: Deng, Chao, Chen, Xuesi, Yu, Haijun, Sun, Jing, Lu, Tiancheng, Jing, Xiabin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel biodegradable triblock copolymer poly(ethylene glycol)-b-poly(l-lactide)-b-poly(l-lysine) (PEG–PLA–PLL) was synthesized by acidolysis of poly(ethylene glycol)-b-poly(l-lactide)-b-poly(ɛ-benzyloxycarbonyl-l-lysine) (PEG–PLA–PZLL) obtained by the ring-opening polymerization (ROP) of ɛ-benzyloxycarbonyl-l-lysine N-carboxyanhydride (ZLys NCA) with amino-terminated PEG–PLA–NH2 as a macroinitiator, and the pendant amino groups of the lysine residues were modified with a peptide known to modulate cellular functions, Gly-Arg-Gly-Asp-Ser-Tyr (GRGDSY, abbreviated as RGD) in the presence of 1,1′-carbonyldiimidazole (CDI). The structures of PEG–PLA–PLL/RGD and its precursors were confirmed by 1H NMR, FT-IR, amino acid analysis and XPS analysis. The cell adhesion and cell spread on the PEG–PLA–PLL/RGD film were enhanced compared to those on pure PLA film. Therefore, the novel RGD-grafted triblock copolymer is promising for cell or tissue engineering applications. Both copolymers PEG–PLA–PZLL and PEG–PLA–PLL showed an amphiphilic nature and could self-assemble into micelles of homogeneous spherical morphology. The micelles were determined by fluorescence technique, dynamic light scattering (DLS), and field emission scanning electron microscopy (ESEM) and could be expected to find application in drug and gene delivery systems.
ISSN:0032-3861
1873-2291
DOI:10.1016/j.polymer.2006.10.046