On‐Demand Tunable Electrical Conductance Anisotropy in a MOF‐Polymer Composite

Property optimization through orientation control of metal–organic framework (MOF) crystals that exhibit anisotropic crystal structures continues to garner tremendous interest. Herein, an electric field is utilized to post‐synthetically control the orientation of conductive layered Cu3(HHTP)2 (HHTP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-05, Vol.20 (18), p.e2309469-n/a
Hauptverfasser: Hong, Taegyun, Lee, Changjae, Bak, Yeongseo, Park, Geonhyeong, Lee, Hongju, Kang, Seunguk, Bae, Tae‐Hyun, Yoon, Dong Ki, Park, Jesse G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Property optimization through orientation control of metal–organic framework (MOF) crystals that exhibit anisotropic crystal structures continues to garner tremendous interest. Herein, an electric field is utilized to post‐synthetically control the orientation of conductive layered Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11‐hexahydroxytriphenylene) crystals dispersed in an electronically insulating poly(ethylene glycol) diacrylate (PEGDA) oligomer matrix. Optical and electrical measurements are performed to investigate the impact of the electric field on the alignment of Cu3(HHTP)2 crystals and the formation of aggregated microstructures, which leads to an ≈5000‐fold increase in the conductivity of the composite. Notably, the composite thin‐films containing aligned Cu3(HHTP)2 crystals exhibit significant conductivity of ≈10−3 S cm−1 despite the low concentration (≈1 wt.%) of conductive Cu3(HHTP)2. The use of an electric field to align Cu3(HHTP)2 crystals can rapidly generate various desired patterns that exhibit on‐demand tunable collective charge transport anisotropy. The findings provide valuable insights toward the manipulation and utilization of conductive MOFs with anisotropic crystal structures for various applications such as adhesive electrical interconnects and microelectronics. Using E‐field, the alignment of conductive Cu3(HHTP)2 in PEGDA yields a 5000‐fold increase in the electrical conductivity of the composite. Despite a low content (≈1 wt.%) of Cu3(HHTP)2, the aligned crystals provide long‐range charge transport channels, resulting in a significant conductivity (≈10−3 S cm−1). The technique enables facile patterning, useful for developing electrical interconnects and microelectronics based on porous conductors.
ISSN:1613-6810
1613-6829
DOI:10.1002/smll.202309469