Alkyne-Functionalized Platinum Chalcogenide (S, Se) Nanoparticles
Metal chalcogenide nanoparticles play a vital role in a wide range of applications and are typically stabilized by organic derivatives containing thiol, amine, or carboxyl moieties, where the nonconjugated particle–ligand interfaces limit the electronic interactions between the inorganic cores and o...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2024-01, Vol.63 (2), p.1046-1053 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Metal chalcogenide nanoparticles play a vital role in a wide range of applications and are typically stabilized by organic derivatives containing thiol, amine, or carboxyl moieties, where the nonconjugated particle–ligand interfaces limit the electronic interactions between the inorganic cores and organic ligands. Herein, a wet-chemistry method is developed for the facile preparation of stable platinum chalcogenide (S, Se) nanoparticles capped with acetylene derivatives (e.g., 4-ethylphenylacetylene, EPA). The formation of Pt–C conjugated bonds at the nanoparticle interfaces, which is confirmed by optical and X-ray spectroscopic measurements, leads to markedly enhanced electronic interactions between the d electrons of the nanoparticle cores and π electrons of the acetylene moiety, in stark contrast to the mercapto-capped counterparts with only nonconjugated Pt–S– interfacial bonds, as manifested in spectroscopic measurements and density functional theory calculations. This study underscores the significance of conjugated anchoring linkages in the stabilization and functionalization of metal chalcogenides, a unique strategy for diverse applications. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.3c03386 |