Inferring super-resolution tissue architecture by integrating spatial transcriptomics with histology

Spatial transcriptomics (ST) has demonstrated enormous potential for generating intricate molecular maps of cells within tissues. Here we present iStar, a method based on hierarchical image feature extraction that integrates ST data and high-resolution histology images to predict spatial gene expres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2024-09, Vol.42 (9), p.1372-1377
Hauptverfasser: Zhang, Daiwei, Schroeder, Amelia, Yan, Hanying, Yang, Haochen, Hu, Jian, Lee, Michelle Y. Y., Cho, Kyung S., Susztak, Katalin, Xu, George X., Feldman, Michael D., Lee, Edward B., Furth, Emma E., Wang, Linghua, Li, Mingyao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spatial transcriptomics (ST) has demonstrated enormous potential for generating intricate molecular maps of cells within tissues. Here we present iStar, a method based on hierarchical image feature extraction that integrates ST data and high-resolution histology images to predict spatial gene expression with super-resolution. Our method enhances gene expression resolution to near-single-cell levels in ST and enables gene expression prediction in tissue sections where only histology images are available. iStar predicts gene expression with near-single-cell resolution from histology images.
ISSN:1087-0156
1546-1696
1546-1696
DOI:10.1038/s41587-023-02019-9