Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation light
We propose a nonlinear optical probe method to image the distribution of collagen fiber orientation in human tissue by measuring the polarization of collagen-induced second-harmonic-generation (SHG) light (SHG polarimetry). Depth-resolved SHG polarimetry, with a depth resolution of 14 mum, was used...
Gespeichert in:
Veröffentlicht in: | Optical and quantum electronics 2005-12, Vol.37 (13-15), p.1397-1408 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a nonlinear optical probe method to image the distribution of collagen fiber orientation in human tissue by measuring the polarization of collagen-induced second-harmonic-generation (SHG) light (SHG polarimetry). Depth-resolved SHG polarimetry, with a depth resolution of 14 mum, was used to evaluate the cross-sectional profile of collagen fiber orientation in Achilles tendon and dentin, revealing a characteristic distribution of collagen orientation along the depth direction. We evaluated the two-dimensional (2D) lateral distribution of collagen fiber orientation in back reticular dermis and anklebone by polarization-resolved SHG imaging, and confirmed an appreciable difference in the distribution profiles of the two samples. We further extended the method to a depth-resolved measurement of the three-dimensional (3D) distribution of collagen orientation in anklebone. The proposed system promises to be a powerful tool for in vivo measurement of collagen fiber orientation in human tissue. |
---|---|
ISSN: | 0306-8919 1572-817X |
DOI: | 10.1007/s11082-005-4219-0 |