Amine-Based MOF for Precious Metal Remediation
Due to the continuous growth rate of the electronic industry, hi-tech companies depend on mining and extracting precious metals to meet the public demand. The high turnover of modern devices generates an alarming amount of electronic waste (e-waste), which contains more precious metals than mined or...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2024-01, Vol.63 (2), p.1258-1265 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to the continuous growth rate of the electronic industry, hi-tech companies depend on mining and extracting precious metals to meet the public demand. The high turnover of modern devices generates an alarming amount of electronic waste (e-waste), which contains more precious metals than mined ores and therefore needs efficient recovery procedures. A highly stable homopiperazine-derived Cd-MOF, poly-[Cd(H2L)]·9H2O, with a protonated amine ligand core, exists as a twofold interpenetrated 3D framework with 1D channels into which the N+–H bond is directed. The geometry of these channels appears to be suitable to host square planar metalate complexes. Under acidic conditions, [MCl4] x− anions containing Au, Cu, Ni, and Pt, representing common components of e-waste under extraction conditions, were tested for capture and recovery. Cd-MOF exhibits remarkable selectivity and uptake performance toward Au with an adsorbent capacity of 25 mg g–1 ads and shows a marked selectivity for Au over Cu in competitive experiments. The adsorption mechanism of Au appears to be predominantly physical adsorption at the surface of the material. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.3c03654 |