Ozone-induced grafting of a sulfoammonium zwitterionic polymer onto low-density polyethylene film for improving hemocompatibility

Ozone‐induced grafting was developed to improve the hemocompatibility of biomaterials based on low‐density polyethylene (LDPE). An LDPE film was activated with ozone and graft‐polymerized with N,N′‐dimethyl(methacryloylethyl)ammonium propane sulfonate (DMAPS). The existence of sulfobetaine structure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2006-09, Vol.101 (6), p.3697-3703
Hauptverfasser: Shan, Bing, Yan, Han, Shen, Jian, Lin, Sicong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ozone‐induced grafting was developed to improve the hemocompatibility of biomaterials based on low‐density polyethylene (LDPE). An LDPE film was activated with ozone and graft‐polymerized with N,N′‐dimethyl(methacryloylethyl)ammonium propane sulfonate (DMAPS). The existence of sulfobetaine structures on the grafted film was confirmed by X‐ray photoelectron spectroscopy and attenuated total reflection/Fourier transform infrared (ATR–FTIR). More DMAPS was grafted onto the LDPE film as the DMAPS concentration increased, as determined by ATR–FTIR. Static contact‐angle measurements indicated that the DMAPS‐grafted LDPE film had a significant increase in hydrophilicity. The blood compatibility of the grafted film was preliminarily evaluated with a platelet‐rich‐plasma (PRP) adhesion study. No platelet adhesion was observed on the grafted film incubated with PRP at 37°C for 180 min. This new sulfoammonium zwitterionic‐structure‐grafted biomaterial might have potential for biomedical applications. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3697–3703, 2006
ISSN:0021-8995
1097-4628
DOI:10.1002/app.20860