Simultaneous estimation of total phenolic and alkaloid contents in the tea samples by utilizing the catechin and caffeine oxidation signals through the square-wave voltammetry technique
[Display omitted] •The first electroanalytical method for the estimation of total phenolic and alkaloid contents in tea samples.•The method utilized catechin and caffeine oxidation signals.•A boron-doped diamond electrode was employed.•Through the analysis of black and green tea samples, the applica...
Gespeichert in:
Veröffentlicht in: | Food chemistry 2024-05, Vol.441, p.138262-138262, Article 138262 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•The first electroanalytical method for the estimation of total phenolic and alkaloid contents in tea samples.•The method utilized catechin and caffeine oxidation signals.•A boron-doped diamond electrode was employed.•Through the analysis of black and green tea samples, the applicability was demonstrated.
This work outlines the simultaneous estimation of the total phenolic and alkaloid contents in the tea samples by using catechin (C) and caffeine (CAF) oxidation signals at a non-modified boron-doped diamond (BDD) electrode. Two irreversible oxidation peaks, about + 1.03 (for C) and + 1.45 V (for CAF) vs Ag/AgCl in acetate buffer solution at pH 4.7, were seen in the cyclic voltammetric profile of the binary mixtures of C and CAF. In optimal conditions and utilizing the square-wave mode, the BDD electrode allows for simultaneous quantification of C and CAF within the concentration ranges of 5.0–100.0 µg mL−1 (1.72 × 10-5 − 3.45 × 10-3 mol/L) and 1.0–50.0 µg mL−1 (5.15 × 10-6 − 2.57 × 10-4 mol/L) respectively. The corresponding detection limits are 1.22 µg mL−1 (4.21 × 10-6 mol/L) for C and 0.11 µg mL−1 (5.66 × 10-7 mol/L) for CAF. Other phenolic compounds (like tannic acid, gallic acid, epicatechin, and epigallocatechin gallate) and other alkaloids (theophylline and theobromine) present in tea samples were examined for selectivity assessment. Ultimately, the applicability of the proposed approach was demonstrated by estimating the total phenolic and alkaloid contents in the black and green tea samples, expressed as C and CAF equivalents. The results obtained were contrasted against those acquired using UV–Vis spectrometry. |
---|---|
ISSN: | 0308-8146 1873-7072 |
DOI: | 10.1016/j.foodchem.2023.138262 |