Exploring the stability and aromaticity of rare earth doped tin cluster MSn16− (M = Sc, Y, La)

Rare earth elements have high chemical reactivity, and doping them into semiconductor clusters can induce novel physicochemical properties. The study of the physicochemical mechanisms of interactions between rare earth and tin atoms will enhance our understanding of rare earth functional materials f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2024-01, Vol.26 (4), p.2986-2994
Hauptverfasser: Jin-Kun Zeng, Wang, Huai-Qian, Hui-Fang, Li, Zheng, Hao, Jia-Ming, Zhang, Xun-Jie Mei, Yong-Hang, Zhang, Xun-Lei Ding
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rare earth elements have high chemical reactivity, and doping them into semiconductor clusters can induce novel physicochemical properties. The study of the physicochemical mechanisms of interactions between rare earth and tin atoms will enhance our understanding of rare earth functional materials from a microscopic perspective. Hence, the structure, electronic characteristics, stability, and aromaticity of endohedral cages MSn16− (M = Sc, Y, La) have been investigated using a combination of the hybrid PBE0 functional, stochastic kicking, and artificial bee colony global search technology. By comparing the simulated results with experimental photoelectron spectra, it is determined that the most stable structure of these clusters is the Frank–Kasper polyhedron. The doping of atoms has a minimal influence on density of states of the pure tin system, except for causing a widening of the energy gap. Various methods such as ab initio molecular dynamics simulations, the spherical jellium model, adaptive natural density partitioning, localized orbital locator, and electron density difference are employed to analyze the stability of these clusters. The aromaticity of the clusters is examined using iso-chemical shielding surfaces and the gauge-including magnetically induced currents. This study demonstrates that the stability and aromaticity of a tin cage can be systematically adjusted through doping.
ISSN:1463-9076
1463-9084
DOI:10.1039/d3cp04803a