Phytic acid/tannic acid reinforced hydrogels with ultra-high strength for human motion monitoring and arrays

Conductive hydrogels have been widely researched for their potential applications in soft electronic devices. Creating environmentally friendly and multifunctional high-strength hydrogels for high-performance devices remains a significant challenge. This study employs the biodegradable material poly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2024-01, Vol.2 (3), p.64-65
Hauptverfasser: Xie, Jiegao, Qin, Yafei, Zeng, Yu, Yuan, Ruibo, Lu, Xinyu, Yang, Xiaojing, Wei, Erjiong, Cui, Chenkai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conductive hydrogels have been widely researched for their potential applications in soft electronic devices. Creating environmentally friendly and multifunctional high-strength hydrogels for high-performance devices remains a significant challenge. This study employs the biodegradable material polyvinyl alcohol (PVA) as the primary component, with phytic acid (PA) and tannic acid (TA) as reinforcing phases, to create a multifunctional, high-strength "green" hydrogel. Through the multiple complexations of two bio-enhancing phases with the PVA main chain, this hydrogel attains ultra-high tensile strength (9.341 MPa), substantial toughness (4.262 MJ m −3 ), and extensive fracture strain (> 1000%), making it a representative with both mechanical performance and antibacterial capabilities. Additionally, it exhibits a low strain sensing limit (0.5%) and excellent durability (500 cycles under 50% strain). This work introduces a novel strategy of combining biodegradable materials with biomass to fabricate multifunctional hydrogels suitable for human motion monitoring and 2D pressure distribution. Phytic acid/Tannic acid enhanced 'green' multifunctional hydrogel with ultra-high strength and antibacterial properties is applied to flexible sensors.
ISSN:1744-683X
1744-6848
DOI:10.1039/d3sm01295f