Chemoselective Intramolecular Morita–Baylis–Hillman Reaction; Acrylamide and Ketone as Sluggish Reacting Partners on a Labile Framework
Chemoselectivity is an important issue frequently encountered while working over labile precursors. Carbonyl compounds with a heteroatom at the β carbon are sensitive precursors because they are prone to elimination under different conditions. Morita–Baylis–Hillman (MBH) reaction, although a widespr...
Gespeichert in:
Veröffentlicht in: | Journal of organic chemistry 2024-01, Vol.89 (2), p.1073-1082 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chemoselectivity is an important issue frequently encountered while working over labile precursors. Carbonyl compounds with a heteroatom at the β carbon are sensitive precursors because they are prone to elimination under different conditions. Morita–Baylis–Hillman (MBH) reaction, although a widespread method for C–C bond formation, has its own limitations. Acrylamide and ketone are such limitations of the MBH reaction. Using them together for an intramolecular MBH (IMBH) reaction on a labile framework prone to elimination is a significant 2-fold synthetic challenge. A highly chemoselective IMBH reaction on such precursors has been established using 1,4-diazabicyclo[2.2.2]octane (DABCO) as a promoter. The protocol leads to quick access to a diversely substituted and functionalized piperidone framework in high yields. Various substitution patterns in the form of 34 successful examples have been studied. A diastereoselective version and tolerance to various functional and protecting groups are the added advantages of the developed methodology. A tertiary carbon at the β position of ketone, however, led to complete reversal of selectivity and gave only the elimination product. Control experiments toward a better understanding of the substitution pattern, role of catalyst, and mechanistic study have been carried out. As an application of the IMBH adduct, a one-step allylic rearrangement for the dihydropyridone framework has also been demonstrated. |
---|---|
ISSN: | 0022-3263 1520-6904 |
DOI: | 10.1021/acs.joc.3c02168 |