Relationship between ozone and air temperature in future conditions: A case study in sichuan basin, China

The Sichuan Basin (SCB) is located in southwestern China and has a unique topography where ozone (O3) pollution is frequent during summer. Few studies have clarified the relationship between O3 and air temperature in SCB. Here, the SCB was divided into four major urban agglomerations. The weather re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental pollution (1987) 2024-02, Vol.343, p.123276-123276, Article 123276
Hauptverfasser: Wang, Ju, Li, Juan, Li, Xinlong, Wang, Dali, Fang, Chunsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Sichuan Basin (SCB) is located in southwestern China and has a unique topography where ozone (O3) pollution is frequent during summer. Few studies have clarified the relationship between O3 and air temperature in SCB. Here, the SCB was divided into four major urban agglomerations. The weather research and forecasting model-community multiscale air quality model (WRF-CMAQ) was used to analyze the meteorology, spatial distribution characteristics of pollutants, and interactions among the urban agglomerations in the SCB. WRF-CMAQ was used to study the historical changes in the climate penalty factor (CPF) from 2015 to 2020 and the climate pathways under the SSP2-4.5 CPF in values in 2030 for the ambitious pollution NDC-goal scenario (NDC) and current-goals scenario (Current). The results show that the SCB is warmer in the summer months with prevailing northeasterly winds. Ozone accumulated in the western part of the SCB, and a high CPF of O3 concentration was most prominent in NW urban agglomeration, where the O3 concentration increased by 4.12–5.40 ppb for every 1 °C increase in air temperature. The observed CPF in the SCB in 2020 averaged 3.64 ppb/°C. The average CPF in the SCB in 2030 was 1.152 ppb/°C under the NDC scenario and 1.269 ppb/°C under the current scenario. This study is critical for understanding the relationship between O3 concentration and air temperature in China. [Display omitted] •Ozone accumulates readily in the NW and SW of the Sichuan Basin.•Maximum observed CPF in NW in 2015–2020.•Ozone concentration increased by 3.64 ppb every 1 °C of air temperature rise in SCB.•Effective pollution control policies can slow future CPF as air temperature rise.
ISSN:0269-7491
1873-6424
DOI:10.1016/j.envpol.2023.123276