Preparation, characterization of basil essential oil liposomes unidirectional single-conducting water sustained-release pads and their preservation properties to Lateolabrax japonicus fillets
The juice exudation of aquatic products oozes out during storage can influence storage quality. Herein, a novel basil essential oil liposome unidirectional water-conducting sustained-release preservation pads (BEOL/UCSP) were prepared with nylon mesh as water-conducting layer, basil essential oil li...
Gespeichert in:
Veröffentlicht in: | Food chemistry 2024-05, Vol.440, p.137825-137825, Article 137825 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The juice exudation of aquatic products oozes out during storage can influence storage quality. Herein, a novel basil essential oil liposome unidirectional water-conducting sustained-release preservation pads (BEOL/UCSP) were prepared with nylon mesh as water-conducting layer, basil essential oil liposome (BEOL) as sustained-release preservation layer, and diatomite and absorbent-cotton as water-absorbing layer. EL/UCSP, β-CL/UCSP, and BEO/UCSP were prepared after BEOL was replaced by eugenol liposome, β-caryophyllene liposome, and BEO. BEOL are microspheres with bilayer structure, had good storage stability, centrifugal stability, thermal stability, embedding capacity, sustained-release, and oxidation resistance, and the main components of preservatives had a synergistic effect on antibacterial properties. The pads without preservative can initially slow down quality deterioration. BEOL/UCSP can directionally absorb exudate and realize long-term sustained-release of preservative, has excellent antibacterial and antioxidant effect, and extended shelf life of Lateolabrax japonicus fillets from 6.0 days to 12.8 days. The BEOL/UCSP can provide technical theoretical support for preservation materials. |
---|---|
ISSN: | 0308-8146 1873-7072 |
DOI: | 10.1016/j.foodchem.2023.137825 |