Bidirectional visual-tactile cross-modal generation using latent feature space flow model

Inspired by visual-tactile cross-modal bidirectional mapping of the human brain, this paper introduces a novel approach to bidirectional mapping between visual and tactile data, an area not fully explored in the predominantly unidirectional existing studies. First, we adopt separate Variational Auto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2024-04, Vol.172, p.106088-106088, Article 106088
Hauptverfasser: Fang, Yu, Zhang, Xuehe, Xu, Wenqiang, Liu, Gangfeng, Zhao, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inspired by visual-tactile cross-modal bidirectional mapping of the human brain, this paper introduces a novel approach to bidirectional mapping between visual and tactile data, an area not fully explored in the predominantly unidirectional existing studies. First, we adopt separate Variational AutoEncoder (VAE) models for visual and tactile data. Furthermore, we introduce a conditional flow model built on the VAE latent feature space, enabling cross-modal bidirectional mapping between visual and tactile data using one model. The experimental results show that our method achieves excellent performance in terms of the similarity between the generated data and the original data (Structural Similarity Index (SSIM) of visual data: 0.58, SSIM of tactile data: 0.80), the classification accuracy on generated data (visual data: 91.60%, tactile data: 88.05%), and the zero-shot classification accuracy between generated data and language (visual data: 44.49%, tactile data: 45.03%). To the best of our knowledge, the method proposed in this paper is the first one to utilize a single model to achieve bidirectional mapping between visual and tactile data. Our model and code will be made public after the acceptance of the paper.
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2023.12.042