Two-Step Machine Learning Approach for Charge-Transfer Coupling with Structurally Diverse Data
Electronic coupling is important in determining charge-transfer rates and dynamics. Coupling strength is sensitive to both intermolecular, e.g., orientation or distance, and intramolecular degrees of freedom. Hence, it is challenging to build an accurate machine learning model to predict electronic...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2024-01, Vol.128 (1), p.271-280 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electronic coupling is important in determining charge-transfer rates and dynamics. Coupling strength is sensitive to both intermolecular, e.g., orientation or distance, and intramolecular degrees of freedom. Hence, it is challenging to build an accurate machine learning model to predict electronic coupling of molecular pairs, especially for those derived from the amorphous phase, for which intermolecular configurations are much more diverse than those derived from crystals. In this work, we devise a new prediction algorithm that employs two consecutive KRR models. The first model predicts molecular orbitals (MOs) from structural variation for each fragment, and coupling is further predicted by using the overlap integral included in a second model. With our two-step procedure, we achieved mean absolute errors of 0.27 meV for an ethylene dimer and 1.99 meV for a naphthalene pair, much improved accuracy amounting to 14-fold and 3-fold error reductions, respectively. In addition, MOs from the first model can also be the starting point to obtain other quantum chemical properties from atomistic structures. This approach is also compatible with a MO predictor with sufficient accuracy. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/acs.jpca.3c04524 |