Autonomous navigation of indoor mobile robots using a global ultrasonic system
Autonomous navigation of an indoor mobile robot, using the global ultrasonic system, is presented in this paper. Since the trajectory error of the dead-reckoning navigation increases significantly with time and distance, the autonomous navigation system of a mobile robot requires self-localization c...
Gespeichert in:
Veröffentlicht in: | Robotica 2004-08, Vol.22 (4), p.369-374 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Autonomous navigation of an indoor mobile robot, using the global ultrasonic system, is presented in this paper. Since the trajectory error of the dead-reckoning navigation increases significantly with time and distance, the autonomous navigation system of a mobile robot requires self-localization capa-bility in order to compensate for trajectory error. The global ultrasonic system, consisting of four ultrasonic generators fixed at a priori known positions in the work space and two receivers mounted on the mobile robot, has a similar structure to the well-known satellite GPS(Global Positioning System), which is used for the localization of ground vehicles. The EKF (Extended Kalman Filter) algorithm is utilized for self-localization and autonomous navigation, based on the self-localization algorithm is verified by experiments performed in this study. Since the self-localization algorithm is efficient and fast, it is appropriate for an embedded controller of a mobile robot. |
---|---|
ISSN: | 0263-5747 1469-8668 |
DOI: | 10.1017/S0263574704000335 |