Time series analysis-based adaptive tuning techniques for a heaving wave energy converter in irregular seas
Abstract The paper presents a time domain model of a heaving buoy wave-energy converter and investigates the tuning problem in irregular seas. The tuning issue is addressed by employing both fixed (passive) and adaptive (active) power-take-off settings. The fixed power-take-off tuning approach inclu...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy Journal of power and energy, 2007-02, Vol.221 (1), p.77-90 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
The paper presents a time domain model of a heaving buoy wave-energy converter and investigates the tuning problem in irregular seas. The tuning issue is addressed by employing both fixed (passive) and adaptive (active) power-take-off settings. The fixed power-take-off tuning approach includes models based on tuning the device natural frequency to either the energy frequency or peak frequency of the sea-state or a weighted average of several peak frequencies. The adaptive tuning approaches employ a sliding discrete Fourier transform frequency analysis, or a time-series analysis of the measured wave elevation and device velocity to estimate a localized dominant wave frequency and hence calculate power-take-off settings. The paper presents details of these tuning techniques by discussing issues related to the modelling, simulation, and predicted power captures for each method. A comparative study of each method along with practical implications of the results and recommendations are also presented. |
---|---|
ISSN: | 0957-6509 2041-2967 |
DOI: | 10.1243/09576509JPE291 |